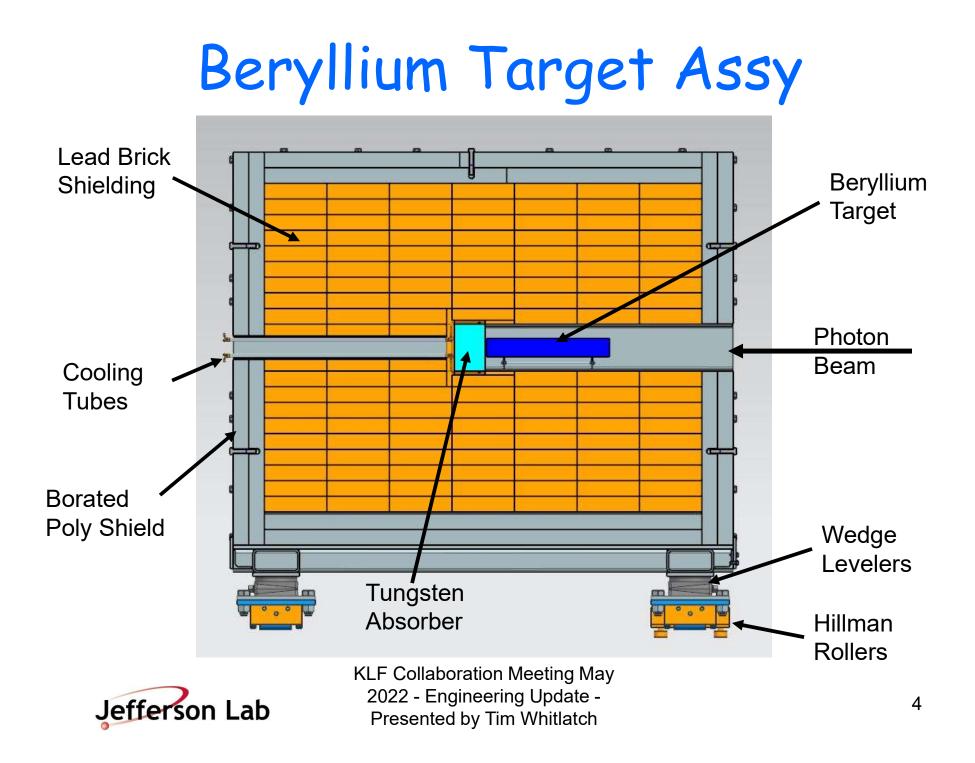
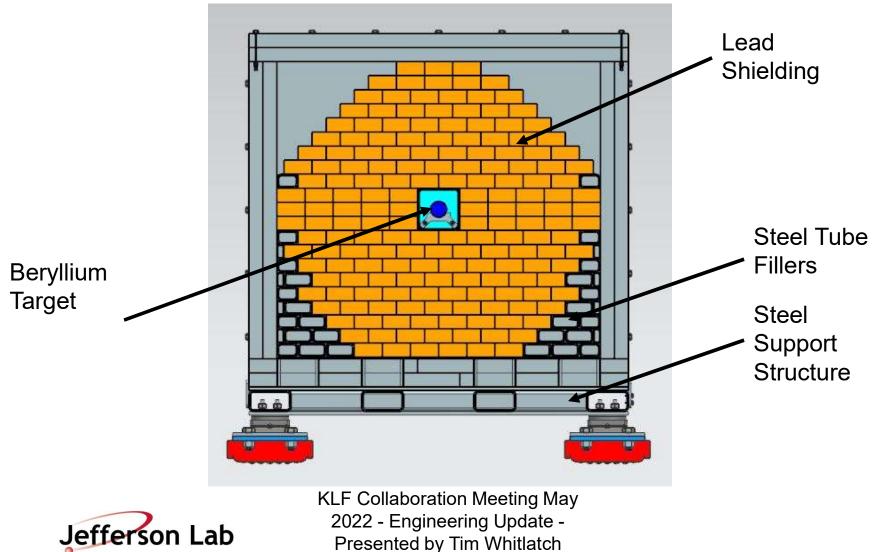


Hall D Collimator Cave Layout

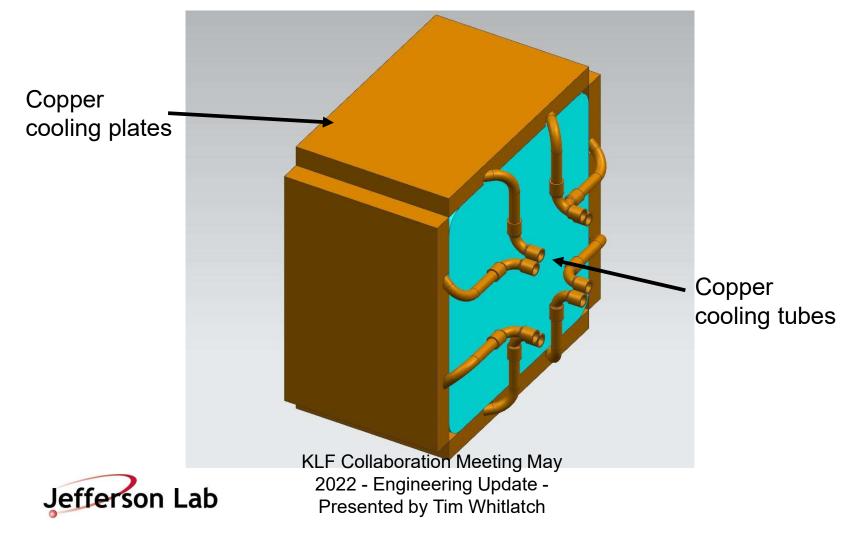



Cave Layout Elevation

Beryllium Target Section

Design Requirements/Specs

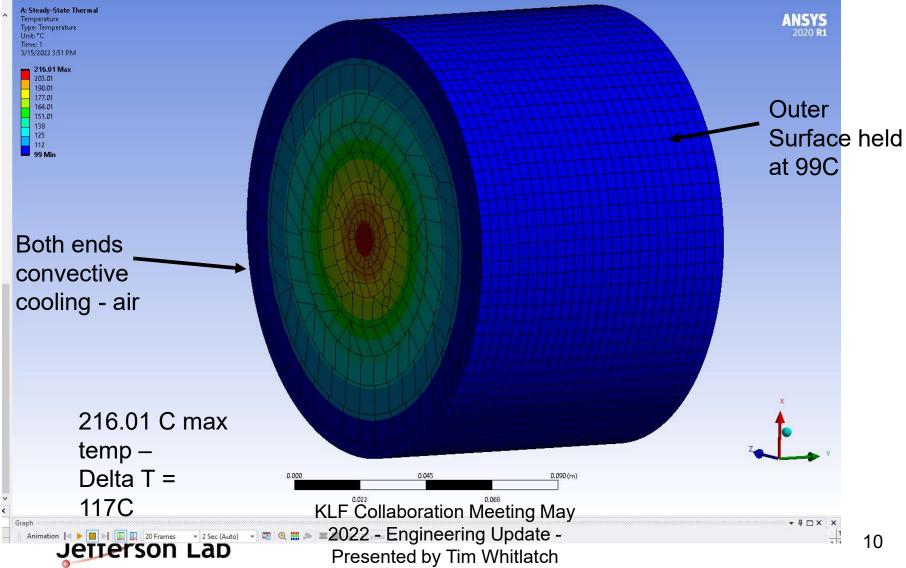
- Berylium Target
 - 6cm diameter
 - ➢ 40 cm length
 - ➢ 500W power absorption
 - Max Temperature 400C (factor of 3 to melting)
 - ➢ Air cooled
- Tungsten absorber
 - ➤ 15cm square
 - ➤ 10cm length
 - ➤ 5.2KW power absorption
 - Max Temperature inside 1000C (factor of 3 to melting)
 - Water cooled separate LCW system required



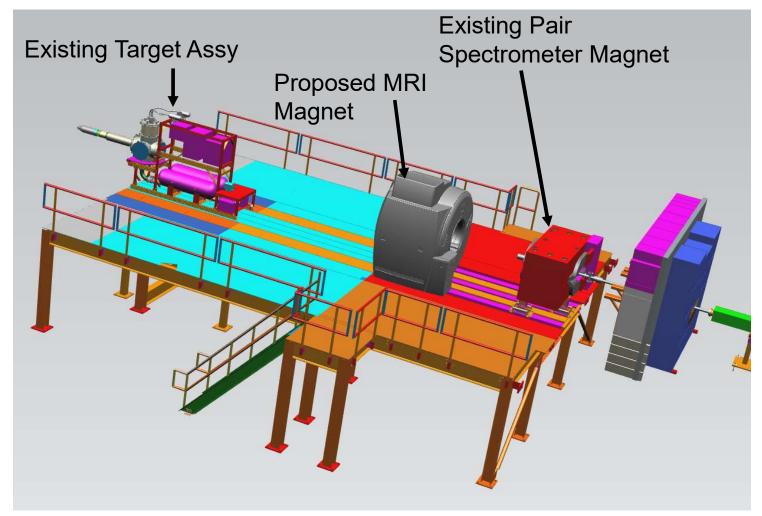
Tungsten Absorber Thermal Analysis

- Power absorption data provided by Vitaly Baturin
- Modelled in ANSYS Static Thermal
- Shows maximum delta T of 216C
- Outer Surface cooled with water under 100C
- Maximum Tungsten Temp 316C

3D Rendering - cooling plates on 4 sides - Max water temp less than 100C


8

Cooling Water removing 6KW from Tungsten


H 5 · ○	c?r ≠ ome Insert	Page Lavo	uit Ea	rmulas [Data Re	view Vi	ew Acrol		KLong System of ell me what you		tanabe [C	ompatibilit	y Mode] - Ei	kcel						E	— ıy Whitlatcl	
			nat Por	innulas L	Jata Ke	VIEW VI	Civ Acrol	Jac Y I	en me what you	s want to do										limoti	y williater	
L42	* ×	√ fx		-		c		1	1				1. 1.4	-			-	6	-	1 10 1		
A A	B 6KW total, 2	C circuits L	.CW	E	F	G	Н	1	J	к	L	M	N	0	Р	Q	R	S	T	U	V	
2 3 d		Jnits		Units	0.015092	Units #	0.00	46 M	ID of tube				Heat E	xchange with wa	ter at 70	nsi DP						
4 L	10 1	m	10000				0.00		10 07 1000				Twater =	37.59972858	B C	average						
5 epsilon 6 nu	0.0000155 f		t 5°C		0.000005	π	e/d =	0.0003	31				N _{ud} = K =		W/MK	From Whi			e + 5000	81.07461	rom Dittus	bel
7 Coil Power 8	3	κW	3000	W		1							Pr =	4.84	extrapolat	te from White						
9		$2g\Delta P d$. 1	ε	2.51								h =	Nud K/D	W/M^2 K							
11	v = -2	$\sqrt{\frac{2g\Delta P}{0.433}}\frac{d}{L}$	log 10 3.		$2 g \Delta P d$								h =	8803.26087								
3			($\overline{\nu}$	0.433 L)							q = A =	hA(Tw-Twall) piDL	=	mCpdelta		coil power	auit I =	0.4		
15		2.51		g gpm	$\left(\frac{\pi}{d}\right) = v \frac{\pi}{d} \frac{d^2}{d}$											area inside c	ooling block	is, 2 per ci	rcuit L =	0.4	n	
7 -{f	$2 \log_{10} \left \frac{c}{3.7d} \right $	$\frac{d}{v}\sqrt{\frac{2 g\Delta P}{0.433}}$		^q (circuit	·) -	$\pi d^2 (22)$	gal	40 Sec	P=mCpdelt 3.8 factor=	1kg/s=15.8	3gpm		Twall =	96.55314416	C							
18	(ν ¥0.433	27	_	$= v \left(\frac{1}{\text{sec}} \right)$	$\frac{\pi d^2}{4}(ft^2)$	$\frac{gal}{0.1337 ft^3}$ ×	min		Cp = (kg/s)(kj/kg*C	4.18	3 KJ/Kg*K	Norm	in sector (hash been prime instanting K to a part (both and the prime) field threaded to be	waancu, mo-an D 🕢 = / = 🚺	V ADRE L. Inst. Tande	- X- T D	n bener tootto	. B	- с х с цин д П Д		
0	$\frac{\varepsilon}{3.7d}$ +	2.51				$\operatorname{Re} = \frac{vd}{v}$		$\Delta T = \frac{3.81}{2}$	Р								a T U	~ H D				
1 2 3 4		$\frac{d}{\sqrt{\frac{2g\Delta P}{0.433}}} \left(\frac{1}{L} \right)$						q						254			Evaporation, Conde	ensation and Hea	t Transfer	00		
4	$\left[2g\Delta P d\right]$	1			1		1							80 20-								
6 DeltaP	V0.433 L	÷.	↓ f	f	/ Planc	♥ Re	q (anar)	DT (deg C)		M	DD.		h	70 - 18 -		و	1			124 136		
	0.30948665		4.149471	0.058078						V	DP			60 - 16 -						al		
8 01		0.003574 4	4.893682		3.620418	3525.087		62 39.22	39	3.620418	8	1		14 14 14 14 14 14 14 12			.*			*		
1 20 2 40				0.035883	6.175187 9.207967	0012.000		11 22.000		6.175187 9.207967	20		- '		1500	2000 2500	N00 *			. 0		
13 45 14 50	1.75462438		5.614456	0.031724	9.851262	9591.865	0.7908376	52 14.41	51	9.851262	45	5		89 40 - 1000	1304					-		
55	1.93981023	0.001418	5.696356	0.030818	11.04985	10758.89	0.8870576	83 12.851	48	11.04985	55			30		. *						
6 60 7 65	2.10879605	0.001312 5	5.764144	0.030097	11.61282 12.1554	11307.04 11835.33	0.9758090	42 11.682	61					20		/						
	2.26521033	0.001228 5	5.821906	0.029787	12.6798 13.18784		1.0586908	54 10.768	02					10	2000	501 Reynolds Num	0 100 iber [-]	operimental Data	20000			
0 80	and the second se			0.029242 0.029	13.68106 14.16077	13320.82 13787.9				1		-		Fig. 7. Heat transfe	rr results for the	fully developed						
2 90 3 95				0.028776	14.62808	14242.91 14686.8			77			<u>.</u>										
4 100 5 105	2.61563959		5.937098	0.028369	15.52931	15120.4	1.2466587	25 9.1444	43					KW=KJ/s=(kg/s)	(kj/kg*C)C							
6 110	2.74330594	0.001029 5	5.974967	0.028011	16.39116	15959.56	1.3158464	45 8.6636	25						Ford	ed convect	ion in turbu	lent pipe f	low [edit]			
7 115 8 120	2.86528961	0.000989 6	6.009402		16.80894	16366.34 16765.29	1.3822774	88 8.2472	59							linski correla	COLOR ALCORE		17910			
0 130		0.000954	6.04096	0.027402	17.62085 18.01588	17541.5	1.4462752	96 7.8823	17							inski's correlati (f/	on for turbuler (8) ($\operatorname{Re}_D - 1$)		S[[1]]10]			
1 135 2 140	3.09486649	0.000922 6	6.070072	0.027268 0.02714	18.40417 18.78606	17919.56 18291.4	1.5081037	61 7.5591	62						N	$u_D =$	$.7(f/8)^{1/2}$ (1					
	3.14964714 3.20349117				19.16189 19.53195			07 7.4109								e f is the Darcy			er be obtaine	d from the Mo	ody chart or	for s
5									_							$= (0.79 \ln(\mathbf{R}$ Gnielinski Corre						
7		-	0.00				1			- For! -	40 m, d=3	5 mm			_	Snielinski Corre $5 \leq \mathrm{Pr} \leq 200$		101.01				
9		For	L=40 m, o	d=3.5 mm.						FOI L=	+σ n1, α=.	,,,, milli,			30	$000 \leq \mathrm{Re}_D \leq$	$5 imes 10^6$					
0 25	1						2	1.80 1.60								s-Boelter equ Dittus-Boelter e		rbulent flows	is an evoluti	function for ca	kulating the	Nue
2 3 3 20 20	Č.					_		E 1.40					_			s the fluid. It is						
4 4 A		_	/	/				1.00 -		/						$u_D = 0.023 \mathrm{F}$	$\operatorname{Re}_D^{4/5} \operatorname{Pr}^n$					
56 9 10	-					c		0.60							where	e: Is the inside d	iameter of the	circular duct				
8 <u>8</u> 5						2										r is the Prandt = 0.4 for the		ated and -	= 0.3 for the	fluid being cor	led [6]	
0 0				مان			K			bar	atio		هما	tine M					- oto tor ule		maM.***	
$\{i_1,\ldots,i_{n-1}\}$	2 paral circ	uits air-	n2 Hx	۲										ting M								
Ready	-							202	2 - F	Enaii	nee	rine	a U	pdate	-			Ħ	#	₽	1	
ffe	erso	n	1 2	h						-				hitlatch								
								Pre	sen	tea t	רער	1 Im	wwr	າຫາລາດ	ר							

9

5.2 KW total input - 2 W/m² convection US face - 80C air temp

Conceptual Setup in Hall D

Status

- Collimator Cave Preliminary Drawings 90% Complete
- Thermal Analysis needed on Berylium
- Full Installation Plan Needed
- Beamline Requirements set
- Flux Monitor in Conceptual Phase Proposed MRI will fit
- Separate meetings required for MRI Integration

Backup

