THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

$K_L + p \rightarrow \pi^+ + \Lambda$

MARSHALL B. C. SCOTT

HTTPS://WWW.LINKEDIN.COM/IN/MARSHALL-SCOTT-PH-D-17AB191B9

KL4 RXN AND GENERATING STEPS

- KI4 : K⁰_L + p → π+ + Λ
 −Λ → p + π⁻ (63.9%) ; Current priority
 −Λ → n + π⁰ (35.8%)
- Generated histograms/root files (Monitoring Histograms, ReactionFilter, mcthrown_tree)
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=monitoring_hists foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=ReactionFilter –PReaction1=10_14__8_18 foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=mcthrown_tree foo_smeared.hddm

BEAM ENERGY RESOLUTION AS A FUNCTION OF BEAM ENERGY : KF Resolutions before Sean's recent update

- Above 3 GeV, the resolution is essentially a delta function with a background
- Below 3 GeV
 - Width is 0.126 GeV for 1 < E < 2 GeV</p>
 - -Width is 0.319 GeV for 2 < E < 3 GeV
 - Both have a long tail toward higher dE

BEAM ENERGY RESOLUTION AS A FUNCTION OF BEAM ENERGY : MEASURED Resolutions before Sean's recent update

- The width increases as energy increases, going from 0.03 GeV in the lowest energy bin to 0.1 GeV in the 5 < E < 6 GeV bin and 0.13 GeV in the E > 6 GeV bin.
- Consequently, the amount of background also increases with energy.

CHANNELS OF INTEREST

1M unconstrained M_A events were generated for KL4, Kl3, and Kl6. 100k with unconstrained M_{κ_s} for KI2.

- Signal(**KI4**) : K₁ + p $\rightarrow \pi^+$ + Λ ; $\Lambda \rightarrow \pi^-$ + p
 - Detected particles (charged decay) : $\pi^+ + \pi^- + p$
- Principal Background(**KI6**) : $K_1 + p \rightarrow \pi^+ + \Sigma^0$; $\Sigma^0 \rightarrow V + \Lambda; \Lambda \rightarrow \pi^- + p$
 - Detected particles (charged decay) : $\pi^+ + \pi^- + p + y$
 - -y, X kinematic variables
- Ancillary Background(**KI3**) : $K_1 + p \rightarrow K^+ + \Xi^0$; $\Xi^0 \rightarrow \pi^0 + \Lambda$; $\Lambda \rightarrow \pi^{-} + p$ and $\pi^{0} \rightarrow 2v$
 - Detected particles (charged decay) : π^{-} + p + 2y + K⁺
 - $-\pi^+$, K⁺, y/ π^0 , X kinematic variables
- Ancillary Background(**KI2**) : $K_1 + p \rightarrow K_s + p$; $K_s \rightarrow \pi^+ + \pi^-$
 - Detected particles (charged decay) : π^{-} + π^{+} + p
 - Mass of $(\pi^{-} + \pi^{+})$, mass of $(\pi^{-} + p)$, displaced vertex

LONG
ACILITY

	(events)
$K_L p \to K_S p$	2.7M
$K_L p \to \pi^+ \Lambda$	7M
$K_L p \to K^+ \Xi^0$	2M
$K_L p \to K^+ n$	60M
$K_L p \to K^- \pi^+ p$	7M

M. B. C. Scott

Reaction

THE GEORGE UNIVERSITY WASHINGTON, DC

Statistics

LAMBDA MASS DISTRIBUTIONS FOR SIGNAL AND BACKGROUND

The only significant difference between the peaks is that the signal(kl4) has a width about 9% smaller than the backgrounds, i.e. 0.03 vs 0.032 GeV.

VARIABLES OF INTEREST

- Variables related to X, show the largest separation between the signal and the background distributions.
- The transverse momentum, mass and energy show the most promise.

Jefferson Lab

 $-p_{T}^{2} = p_{x}^{2} + p_{y}^{2}$ $-M_{T}^{2} = E^{2} - p_{z}^{2}$ $-E_{T}^{2} = E^{2} * p_{T}^{2}/p^{2}$

VARIABLES OF INTEREST 2

The px and py momenta of the X particle are also important for discrimination.

FIRST ORDER CUTS

- The first look at the cuts to remove background are broken up by variable and cuts that leave 90% and 95% of the signal.
- The tables to the left list the cuts, variables, and the percentage of the signal and backgrounds that remain after the cut.

90% Cut						
Variable	Cut Value	Kl4	KI6	KI3		
Et ²	0.01	0.90	0.62	0.29		
Pt	0.1183	0.90	0.66	0.26		
M_t^2	0.000333	0.92	0.73	0.61		
M _x	0.016	0.90	0.70	0.56		
P _x P _y Rect.	0.088	0.90	0.55	0.28		
95% Cut						
Variable	Cut Value	Kl4	KI6	KI3		
Et ²	0.22	0.95	0.87	0.49		
Pt	0.18	0.95	0.90	0.52		
M_t^2	0.003	0.95	0.78	0.62		
M _x	0.053	0.95	0.82	0.63		
P _x P _y Rect.	0.122	0.95	0.80	0.48		

9

FIRST ORDER CUTS 2

- For the KI2 background, i.e. K_L + p -> K_s + p, which shares the same detected particles as the signal, a simple m_∧ < 1.2 cut leaves 99.4% of the unfitted signal and less than 0.3% of the background.</p>
- The current KI2 file was only drawn only with 100k events, unlike the 1M events for each of the other backgrounds.

THE GEORGE

WASHINGTON, DC

Back up slides

Blue (W < 3 GeV); **Red** (W > 3 GeV)

LAMBDA MASS AS A FUNCTION OF W

5452

20.04

15

WASHINGTON, DC

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

WASHINGTON, DC

WASHINGTON

LONG

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC