Hyperons in Neutron Stars

Nicholas Zachariou

KLF collaboration meeting May 2020

Outline

- Why study the YN interaction
- Ongoing studies
 - Exclusive hyperon photoproduction
- Summary and KLF

The Hyperon Puzzle

I. Vidana, Proc. R. Soc. A 474, 20180145 (2018)

MSP M_G=2.14 +/- 0.1 M_s Nat Astron (2019) doi:10.1038/s41550-019-0880-2

- Hyperons are expected to appear in the core of NS at $\rho \sim 2-3~\rho_0$
- Hyperon soften the EoS → Reduction on maximum NS mass
- Observation of NS with $M_G>2M_s$ is incompatible with such soft EoS \rightarrow Hyperon Puzzle

Artist rendition of NS merger

The Hyperon Puzzle

A comprehensive picture of the strong interaction is needed to understand both the NN and YN interactions

YN interaction is poorly constrained: Difficulties associated with performing high-precision scattering experiments with hyperon beams

• Large uncertainties in the scattering lengths

 $a({}^{1}S_{0}) = -0.7 - -2.6 \text{ fm}$

 $a({}^{3}S_{1}) = -1.7 - -2.15 \text{ fm}$

Hyperon Puzzle: Possible solutions

- YY and YN forces
- YNN and YYN three body forces

D. Lonardoni, Phys. Rev. Lett. 114, 092301 (2015)
J. Haidenbauer et al., Eur. Phys. J. A 53, 121 (2017)
I. Vidana, Proc. R. Soc. A 474, 20180145 (2018)

Experimental data are needed to place constraints on the interaction

What is available?

Best way to obtain information is through $YN \rightarrow YN$

Plots from PDG 2018

Total of <1300 observed $\Lambda p \rightarrow \Lambda p$

Λ source	Detector	p_{Λ}	$N_{\Lambda p \to \Lambda p}$
$\pi^- p \to \Lambda K^0$	LH ₂ BC	0.5-1.0	4
$\pi^- p \rightarrow \Lambda K^0$	$LH_2 BC$	0.4 - 1.0	14
$K^-N \to \Lambda \pi$	Propane BC	0.3-1.5	26
$K^-N \to \Lambda \pi$	Freon BC	0.5 - 1.2	86
$K^-A \to \Lambda X$	Heavy Liquid BC	0.15-0.4	11
$K^- p \to \Lambda X$	$LH_2 BC$	0.12-0.4	75
$nA \to \Lambda X$	Propane BC	0.9–4.7	12
$K^- p \to \Lambda X$	$LH_2 BC$	1.0 - 5.0	68
$K^- p \to \Lambda X$	$LH_2 BC$	0.1-0.3	378
$K^- p \to \Lambda X$	$LH_2 BC$	0.1-0.3	224
K^- Pt $\rightarrow \Lambda X$	$LH_2 BC$	0.3-1.5	175
p Pt $\rightarrow \Lambda X$	$LH_2 BC$	1.0 - 17.0	109
$pCu \rightarrow \Lambda X$	LH ₂ BC	0.5 - 24.0	71

Difficulties performing high-precision scattering experiments with short-lived beams

Hyperon Physics – Complementary approaches

Hypernuclear studies have uncertainties associated with medium modification as well as many-body effect

Hyperon Physics – Complementary approaches

Final State Interactions

$$\gamma N \rightarrow KY YN \rightarrow \Lambda N$$

 $\gamma d \rightarrow KYN$

- Two-step process where Hyperon rescatters with secondary nucleon
- Kaon identification allows tagging of hyperon beam
- 4π detector allows full reconstruction of the event
- Hydrogen and deuterium targets

Exclusive hyperon Photoproduction off deuterium

The QF events can be significantly reduced or enhanced experimentally, through kinematic constraints 8

Hyperon-Nucleon Theoretical studies $\gamma d \rightarrow K^+ \Lambda n$

- Existing YN models allow the calculation of single and double polarization observables
- Two YN potentials (NSC97F and NSC89) give the correct hypetrition binding energy
- NSC97F and NSC89 lead to very different predictions of polarisation observables at some kinematics

K. Miyagawa et al., Phys. Rev. C 74, 034002 (2006)

9

- Liquid Hydrogen Target
- p, p', π detected
- Ap scatter elastically

 $\Lambda p
ightarrow \Lambda p$

PhD Thesis of Joey Rowley

CLAS Detector g12 Data

PhD Thesis of Joey Rowley

CLAS Detector g12 Data

 π

0.7 0.8

0.6

 Λ'

Λ

p

PhD Thesis of Joey Rowley

CLAS Detector g12 Data

PhD Thesis of Joey Rowley

80000 ۸' 70000 60000 50000 40000 30000 20000 10000 1.07 1.11 1.12 Μ (pπ) [GeV/c²] 1.08 1.09 1.1 1.13 1.14 1.15 2500 Λ 2000 counts 1500 1000 And the 500 Und have a second 8.8 0.9 1 1.1 MM (X p, л P) [GeV/c²] 1.2 1.3

90000

PhD Thesis of Joey Rowley

CLAS Detector g12 Data

PhD Thesis of Joey Rowley

Preliminary Results

CLAS Detector g12 Data

- Black: Existing data from PDG
- Green: Measurements from this study
- Blue: Systematic Errors

PhD Thesis of Joey Rowley

Polarisation observables $\gamma d \rightarrow K^+ \Lambda n$

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - P_{lin} \Sigma \cos 2\phi + \alpha \cos \theta_x (-P_{lin} O_x \sin 2\phi - P_{circ} C_x) - \alpha \cos \theta_y (-P_y + P_{lin} T \cos 2\phi) - \alpha \cos \theta_z (P_{lin} O_z \sin 2\phi + P_{circ} C_z) \}$$

Beam Polarisation Linearly polarized Circularly polarized

 $\begin{array}{l} \Lambda \mbox{ Recoil Polarisation} \\ \mbox{ Self-analysing power} \\ \alpha = 0.75 \end{array}$

Exclusivity of the Reaction

Suppression of Quasi-free

Reaction Reconstruction

Interpretation studies

20

KLF

- Precise measurement on YN interaction (~30 times higher statistics)
 - Cross section and polarization observables
- First measurement on double strangeness Xi-N interaction
- Access to three-body forces