Lattice QCD for Hyperon Spectroscopy

David Richards
Jefferson Lab

KLF Collaboration Meeting, 12th Feb 2020

Outline

- Lattice QCD - the basics.....
- Baryon spectroscopy
- What's been done....
- Why the hyperons?
- What are the challenges....
- What are we doing to overcome them...

Lattice QCD

- Continuum Euclidean space time replaced by four-dimensional lattice, or grid, of "spacing" a - Gauge fields are represented at SU(3) matrices on the links of the lattice - work with the elements rather than algebra

$$
U_{\mu}(n)=e^{i a T^{a} A_{\mu}^{a}(n)}
$$

Wilson, 74

Quarks ψ, ψ are Grassmann

Variables, associated with the sites of the lattice
Work in a finite 4D space-time volume

- Volume V sufficiently big to contain, e.g. proton
- Spacing a sufficiently fine to resolve its structure

Lattice QCD - Summary

Lattice QCD is QCD formulated on a Euclidean 4D spacetime lattice. It is systematically improvable. For precision calculations::

- Extrapolation in lattice spacing (cut-off) $a \rightarrow 0: a \leq 0.1 \mathrm{fm}$
- Extrapolation in the Spatial Volume $V \rightarrow \infty: m_{\pi} L \geq 4$
- Sufficiently large temporal size $T: m_{\pi} T \geq 10$
- Quark masses at physical value $m_{\pi} \rightarrow 140 \mathrm{MeV}: m_{\pi} \geq 140$ MeV
- Isolate ground-state hadrons

Ground-state masses
Hadron form factors, structure functions, GPDs
Nucleon and precision matrix elements

Low-lying Spectrum

Variational Method

Subleading terms \rightarrow Excited states

Construct matrix of correlators with judicious choice of operators

$$
C_{i j}(t, 0)=\frac{1}{V_{3}} \sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{i}(\vec{x}, t) \mathcal{O}_{j}^{\dagger}(\vec{y}, 0)\right\rangle=\sum_{N} \frac{Z_{i}^{N *} Z_{j}^{N}}{2 E_{N}} e^{-E_{N} t}
$$

Delineate contributions using variational method: solve

$$
\begin{gathered}
C(t) v^{(N)}\left(t, t_{0}\right)=\lambda_{N}\left(t, t_{0}\right) C\left(t_{0}\right) v^{(N)}\left(t, t_{0}\right) \\
\lambda_{N}\left(t, t_{0}\right) \rightarrow e^{-E_{N}\left(t-t_{0}\right)}\left(1+\mathcal{O}\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{gathered}
$$

Can pull out excited-state energies - but pion and nucleon only states stable under strong interactions!

Baryon Operators

Aim: interpolating operators of definite (continuum) JM: OJM
Starting point
$\langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}$
$B=\left(\mathcal{F}_{\Sigma_{\mathrm{F}}} \otimes \mathcal{S}_{\Sigma_{\mathrm{S}}} \otimes \mathcal{D}_{\Sigma_{\mathrm{D}}}\right)\left\{\psi_{1} \psi_{2} \psi_{3}\right\}$
Flavor Spin Orbital Edwards et al., Phys.Rev. D84 (2011)

$$
\overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right) 074508
$$

Introduce circular basis:

$$
\begin{aligned}
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right)
\end{aligned}
$$

Chromomagnetic

Straighforward to project to definite spin: $J=1 / 2,3 / 2,5 / 2$
$\left.\bar{D}_{i}, D_{j}\right\rfloor \equiv F_{i j}$

$$
|[J, M]\rangle=\sum_{m_{1}, m_{2}}\left|\left[J_{1}, m_{1}\right]\right\rangle \otimes\left|\left[J_{2}, m_{2}\right]\right\rangle\left\langle J_{1} m_{1} ; J_{2} m_{2} \mid J M\right\rangle
$$

Positive-parity Baryon Spectrum

Putting it Together

Common mechanism in meson and baryon hybrids: chromomagnetic field with E_{g} ~ 1.2-1.3 GeV

Spectrum is at least as rich as quark model - plus hybrid states across flavor channels in $P=+$

R. Edwards et al., Phys. Rev. D87 (2013) 054506

Evidence for many charmed Baryons

Bazavov et al, PLB 737, 210 (2014)

All charmed mesons/baryons

Charged charmed mesons/baryons

Strange charmed mesons/baryons
HRG with richer spectrum of states than PDG to describe lattice calculations

Thermal Conditions at Freeze-out

Can we learn about nature of the states?

Hints at structure of $\Lambda(1405)$?

Hall et al, Phys. Rev. D 95, 054510

Spectrum is rich - and strange-quark states essential component

\downarrow

Caveat Emptor! - states are resonances, unstable under strong interactions

"Luscher method" - relate energies shifts at finite volume to infinite-volume scattering amplitudes

$$
\text { R.Briceno,J.Dudek,R.Young, Rev.Mod.Phys. } 90 \text { (2018), } 025001
$$

Reinventing the quantum-mechanical wheel

Thanks to Raul Briceno (in 1+1 dimensions)

Periodicity: $\quad L p_{n}=2 \pi n$

Reinventing the quantum-mechanical wheel

Two particles:

Reinventing the quantum-mechanical wheel

Two particles:

Reinventing the quantum-mechanical wheel

Reinventing the quantum-mechanical wheel

Two particles:
 infinite volume
 scattering phase shift

 $\psi(x) \sim e^{i p^{*}}|x|+i 2 \delta\left(p^{*}\right)$
 Asymptotic wavefunction
 Periodicity: $\quad L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n$

Resonant Phase Shift

We have treated excitations as stable states - resonances under strong interaction Luscher: finite-volume energy levels to infinite-volume scattering phase shift

Inelastic Threshold

$$
\mathcal{O}_{\pi, \pi}^{\Gamma, \gamma}(|\vec{p}|)=\sum_{m} \mathcal{S}_{\Gamma, \gamma}^{\ell, m} \sum_{\hat{p}} Y_{\ell}^{m}(\hat{p}) \mathcal{O}_{\pi}(\vec{p}) \mathcal{O}_{\pi}(-\vec{p})
$$

Wilson, Briceno, Dudek, Edwards, Thomas, arXiv:1507.02599

Transition form factor of ρ

Framework for:

- Inelastic scattering
- Multi-hadron final states
- External currents

Briceno, Hansen and WalkerLoud, PRD 91, 034501 (2015)

Lattice QCD can calculate what cannot be measured experimentally, e.g. Form factors of resonances.

Briceno et al., Phys. Rev. D 100, 034511 (2019)

Energy-Momentum Tensor

"Understanding the Glue That

 Binds Us All: The Next QCD Frontier in Nuclear Physics"- Quark masses contribute only 1% to mass of proton: binding through gluon confinement
- Gluon spin and orbital angular momentum
 to spin of proton largely unknown

$$
T_{\mu \nu}=\frac{1}{\lambda} \bar{\psi} \gamma_{(\mu} D_{\nu)} \psi+G_{\mu \alpha} G_{\nu \alpha}-\frac{1}{4} \delta_{\mu \nu} G^{2} ;\langle P| T_{\mu \nu}|P\rangle=P_{\mu} P_{\nu} / M
$$

Trace Anomaly: $T_{\mu \mu}=-\left(1+\gamma_{m}\right) \bar{\psi} \psi+\frac{\beta(g)}{2 g} G^{2}$

- Quark energy

Glue energy
Trace anomaly

χ QCD Collaboration, ETMC

Yang, this meeting

What about Baryons - and hyperons?

The theoretical elements are in place......

Combinatorics of Wick contractions much more demanding....

Luka Leskovec et al., arXiv:1806.02363

See next talk by Colin Morningstar

Hierarchy of Computations

Capability Computing Gauge Generation

e.g. Summit at ORNL
$P[U] \propto \operatorname{det} M[U] e^{-S_{G}[U]}$

Several V, a, T, m_{π}
~ 10\% LeadershipClass Resources

Capacity Computing Observable Calculation

e.g. GPU/KNL cluster at JLab, BNL, FNAL

$$
\langle\mathcal{O}\rangle=\frac{1}{N} \sum_{n=1}^{N} \mathcal{O}\left(U^{n}, G\left[U^{n}\right]\right)
$$

$$
\text { e.g. } C(t)=\sum_{\vec{x}}\langle N(\vec{x}, t) \bar{N}(0)\rangle
$$

"Desktop" Computing Physical Parameters

e.g. Mac at your desk

$$
C(t)=\sum_{n} A_{n} e^{-E_{n} t}
$$

$M_{N}\left(a, m_{\pi}, V\right)$

Computationally Dominant

had spec

Hadron Spectrum Collaboration

Home About Highlights People Support Publications
Centered at JLab (not me!)

Scientific Discovery through Advanced Computing

Project Page
https://lqcdscidac4.github.io/iindex.html
Major effort at JLab - led by Robert Edwards

Important element is speeding up the contractions!

Gauge Generation

Hardware: $2.13 x$ wall-time on $8 x$ fewer GPUs $=17 x$

Distillation

Measure matrix of correlation functions:
M. Peardon et al., PRD80,054506 (2009)

$$
C_{i j}(t) \equiv \sum_{\vec{x}, \vec{y}}\left\langle N_{i}(\vec{x}, t) \bar{N}_{j}(\vec{y}, 0)\right\rangle
$$

Can we evaluate such a matrix efficiently, for reasonable basis of operators? Introduce $\tilde{\psi}(\vec{x}, t)=L(\vec{x}, \vec{y}) \psi(\vec{y}, t)$ where L is 3D Laplacian Write $\quad L \equiv(1-\kappa \nabla / n)^{n}=\sum f\left(\lambda_{i}\right) \xi^{i} \times \xi^{* i} \quad$ where λ_{i} and ξ_{i} are eigenvalues and eigenvectors of the Laplacian. i

We now truncate the expansion at $\mathrm{i}=\mathrm{N}_{\text {eigen }}$ where $\mathrm{N}_{\text {eigen }}$ is sufficient to capture the lowenergy physics.
Insert between each quark field in our correlation function.
Perambulators $\quad \tau_{\alpha \beta}^{i j}(t, 0)=\xi^{* i}(t) M^{-1}(t, 0)_{\alpha \beta} \xi^{j} \quad$ Multi-grid solvers
$C_{i j}(t)=\phi_{\alpha \beta \gamma)}^{i,(p q r)}(t) \phi_{\bar{\alpha} \bar{\beta} \bar{\gamma}}^{j,(\bar{p} \bar{r})}(0) \times\left[\tau_{\alpha \bar{\alpha}}^{p \bar{p}}(t, 0) \tau_{\beta \bar{\beta}}^{q \bar{q}}(t, 0) \tau_{\gamma \bar{\gamma}}^{r \bar{r}}(t, 0)+\ldots\right]$

- Meson correlation functions N^{3}
- Baryon correlation functions N^{4} Severely constrains baryon lattice sizes
- Stochastic sampling of eigenvectors - stochastic LaPH
- Lower pion mass
- Finer isotropic lattice
- Different action

Tanjib Khan, preliminary
Convergence between

Spectroscopy Structure

Hybrid-like states

Summary

- Lattice QCD enables the solution of QCD - it is not modeling QCD!
- Lattice calculations have already demonstrated that the importance of a hyperon program:
- Spectrum is rich
- New states needed to describe phase structure of QCD
- Theoretical framework for first-principles calculation is in place:
- "Luscher" approach and its extension to multi-channel and inelastic processes
- External currents - transition form factors
- LQCD can calculate what cannot be determined experimentally
- Alignment of theoretical advances, exascale computers, and the software to exploit them!
- Convergence of hadron structure and spectroscopy efforts.

