

CEBAF INJECTOR AT 200 kV: K-LONG BUNCH CHARGE WITH SPIN FLIPPER OFF/ON

ABSTRACT

The forthcoming K-Long experiment in Jefferson Lab's Hall D presents distinct beam requirements, marked by a notably low bunch repetition rate and an unusually high bunch charge. Furthermore, the CEBAF Injector requires a parity quality beam for experiments such as the Measurement of a Lepton-Lepton Electroweak Reaction (MOLLER). In this study, to prepare for the upcoming K-Long experiment, using the optimized settings of the magnetic elements and RF amplitude and phases, we conducted simulations covering a range of bunch charge beams, from low to high specifications, while considering concurrent operations across all four Halls at CEBAF. Through these simulations, we systematically analyzed beam transmission as well as the transverse and longitudinal beam characteristics, examining the impact of Spin Flipper settings in both ON and OFF states.

INTRODUCTION

A Wien filter is a device with static electric and magnetic fields orthogonal to each other and arranged in such a way as to provide a net spin rotation without deflecting the beam. The Continuous Electron Beam Accelerator Facility (CEBAF) injector has two Wien filters along with two spin flipper solenoid magnets in between them for the spin orientations required for the experimental target. The first Wien filter (vertical) downstream of the DC photo-gun rotates the polarization from longitudinal to vertical. The second Wien filter (horizontal) rotates the polarizations in-plane to compensate precession of CEBAF transport magnets. The Solenoids in between ensure additional polarization rotations.

S. Pokharel^{1#}, A. S. Hofler², R. Kazimi², G. A. Krafft^{1,2}, M. Bruker², J. Grames², R. Suleiman², S. Zhang²

¹ Center for Accelerator Science, Old Dominion University, Norfolk, VA 23529, U.S.A. ² Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

SIMULATED BEAM CHARACTERISTICS						
Beam Characteristics upstream of the first full cryomodules in the CEBAF injector						
SPIN FLIPPER OFF						
beam characteristics	bunch specifications					
	2fC: Hall B	0.12pC: Hall C	0.26pC: Hall A (MOLLER)	0.32pC: Hall D (K_L base)	0.64pC: Hall D (K _L goal)	
beam transmission (%)	99.52	94.40	97.84	99.28	95.75	
bunch length (ps)	1.12	0.55	0.37	0.38	0.67	
ϵ_{nx} , ϵ_{ny} (mm- mrad)	0.84, 0.42	0.27, 0.29	0.20, 0.25	0.21, 0.29	0.26, 0.32	
σ_x , σ_y (mm)	1.86, 3.36	1.39 , 1.53	1.04, 1.55	1.08, 1.68	1.30, 1.85	
$\frac{\sigma_{E_k}}{\sigma_{E_k}}$ (%)	1.40	0.65	0.63	0.69	1.04	
E_k						
SPIN FLIPPER ON (Flip Left/Flip Right)						
beam characteristics	bunch specifications					
	2fC: Hall B	0.12pC: Hall C	0.26pC: Hall A (MOLLER) 0.32pC: Hall D (K_L base) 0.64pC: Hall D (K_L goal)	
beam transmission (%)	99.95	96.61	99.93	97.96	99.89	
bunch length (ps)	1.21	0.63	0.38	0.37	0.70	
ϵ_{nx} , ϵ_{ny} (mm-mrad)	0.78, 0.32	0.29, 0.29	0.27, 0.29	0.23, 0.27	0.35, 0.41	
σ_x , σ_y (mm)	1.70, 2.53	1.29 , 1.52	1.08, 1.58	0.96, 1.53	1.23, 2.07	
$\frac{\sigma_{E_k}}{E_k} (\%)$	1.50	0.70	0.67	0.74	1.16	
*There is no significant difference in the beam characteristics with spin flip left and right. The average KE after the quarter cryomodules is 6.98 MeV.						
D FUTURE WORK a the spin rotator (VWien + spin the effects of spin manipulation beam characteristics. Simulations beam quality at twice the baseline at optimized settings for a high with Halls A, B, C, and D is es in the transverse beam optics N.			Spin Flip OFF		Spin Flip ON: Filp Left	
		2.5 2 (f) 1.5 5 1 0.5 0 0	$\begin{bmatrix} 2.5 \\ 2 \\ 0.26 \text{ pC: Hall A (MOLLER)} \\ 0.32 \text{ pC: Hall D (K_1)} \\ 0.32 \text{ pC: Hall D (K_1)} \\ 0.64 \text{ pC: Hall D (K_1)} \\ 0.64 \text{ pC: Hall D (K_1)} \\ 0.5 \\ 0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 2 \\ 0.5 \\ 0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 2 \\ 0.26 \text{ pC: Hall A (MOLLER)} \\ 0.32 \text{ pC: Hall A (MOLLER)} \\ 0.32 \text{ pC: Hall D (K_1)} \\ 0.32 \text{ pC: Hall D (K_1)} \\ 0.64 \text{ pC: Hall D (K_1)} \\ 0.5 \\ 0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 2 \\ (m) \\ $			
r at 180 kV. After getting the Horizontal beam sizes for different bunch charge specification					ions along the injector	
an be performed by setting the he Wien system (both VWien and This will help to find the the K-Long experiment.		25 20 کا 15 کا 10 ا	Spin Flip OFF 50002 pC: Hall B 0.12 pC: Hall C 0.26 pC: Hall A (MOLLER) 0.32 pC: Hall D (K,) 0.64 pC: Hall D (K,)			
EDGEMENTS work supported by the U.S.			$ \begin{bmatrix} 5 \\ 0 \\ 0 \\ 5 \\ 10 \\ z \\ (m) \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \\ z \\ m \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \\ 5 \\ 10 \\ z \\ (m) \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \\ 5 \\ 10 \\ z \\ (m) \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \\ 0 \\ z \\ (m) \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ z \\ (m) \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			
ct No. DE – AC05 – 06OR23177. Bunch length variation along the beamline for different bunch charge specification						
ional Spin Symposium (SPIN 2023)		0.1	Spin Flip OFF	0.1	Spin Flip ON: Flip Right	
		0.08	0.002 pC: H 0.12 pC: H 0.26 pC: Hall A (MOL 0.32 pC: Hall D 0.64 pC: Hall D	Iall B Iall C LER) (K _L) (K _L) (K _L) 0.08	0.12 pC: Hall C 0.26 pC: Hall A (MOLLER) 0.32 pC: Hall D (K _L) 0.64 pC: Hall D (K _L)	

一^世 0.04 L

0.02

Halls.

10

5

