
LERF LLRF Engineer’s Guide

Contents
1. Help ... 2

2. CPUs, IOCs, and Servers ... 2

3. Chassis IPs ... 2

4. Rack and Chassis EPICS PV Prefixes .. 3

5. Configuration Control .. 3

6. File System Locations and Info ... 4

Probably need to know .. 4

Hopefully won’t need to know ... 4

7. Executing Non-Channel-Access Scripts ... 5

8. EPICS LLRF Hardware Diagnostics ... 5

9. FEED ‘Launcher’ ... 10

10. Change IP Address of FPGA board (QF2pre) or Program ‘Fresh’ FPGA board 11

11. New Version of lcls2_llrf .. 13

12. New FW Version .. 13

13. Expose New FW Registers in EPICS ... 13

14. Verify QF2-pre Network Settings .. 15

Last updated

5/22/2019, 10:30 PDT

S. Hoobler

1. Help
Wesley Moore maintains the LERF control system infrastructure and can help with your accounts, setup,

etc. (wmoore@jlab.org)

Hugo Slepicka (slepicka@slac.stanford.edu) is a good resource for questions about the LinuxRT OS and

its python installation.

2. CPUs, IOCs, and Servers
One LinuxRT CPU is connected to each pair of cryomodule racks. One IOC runs on that CPU and

interfaces to all the chassis in those two racks.

Any task that requires access to the LLRF private network must be performed on the appropriate

LinuxRT CPU. Those CPUs have a limited set of python modules installed. Tasks that require other

python modules must be performed on the user Linux servers/workstations; from there you will not

have access to the private network and thus must use EPICS Channel Access.

LCLS-II Cryomodule Name LinuxRT CPU Node
Name*

EPICS IOC
Name*

JLab Cryomodule Number

ACCL:L1B:0200 lcls-llrfcpu01 sioc-l1b-rf01 1

ACCL:L1B:0300 lcls-llrfcpu02 sioc-l1b-rf02 2

*CPU Node Name is referred to as <cpuname>in the commands shown below.

 EPICS IOC Name is referred to as <iocname> in the commands shown below.

Node Type Tasks

lclsapp1 Linux server For software installation and testing

lcls01, lcls02, lcls03 Linux workstation

Please contact Wesley (above) for instructions on which servers/accounts to use for your work—it may

be different for software installation vs testing.

3. Chassis IPs
These are the IP addresses used in the LLRF internal network. They are the same for each cryomodule.

Rack Chassis IP

Cavities 1-4 (aka Rack A) RES 192.168.0.100

Cavities 1-4 (aka Rack A) RFS1 (cavities 1,2) 192.168.0.101

Cavities 1-4 (aka Rack A) RFS2 (cavities 3,4) 192.168.0.102

Cavities 1-4 (aka Rack A) PRC 192.168.0.103

Cavities 5-8 (aka Rack B) RES 192.168.0.200

Cavities 5-8 (aka Rack B) RFS1 (cavities 5,6) 192.168.0.201

Cavities 5-8 (aka Rack B) RFS2 (cavities 7,8) 192.168.0.202

Cavities 5-8 (aka Rack B) PRC 192.168.0.203

mailto:wmoore@jlab.org
mailto:slepicka@slac.stanford.edu

4. Rack and Chassis EPICS PV Prefixes
These are the PV prefixes for the racks and chassis. These are referred to as <prefix> in the commands

shown later in this document.

ACCL:L1B:0200 entity PV Prefix ACCL:L1B:0300 entity PV Prefix

Rack A ACCL:L1B:0200:RACKA Rack A ACCL:L1B:0300:RACKA

Rack A RFS1 ACCL:L1B:0200:RFS1A Rack A RFS1 ACCL:L1B:0300:RFS1A

Rack A RFS2 ACCL:L1B:0200:RFS2A Rack A RFS2 ACCL:L1B:0300:RFS2A

Rack A PRC ACCL:L1B:0200:PRCA Rack A PRC ACCL:L1B:0300:PRCA

Rack A RES ACCL:L1B:0200:RESA Rack A RES ACCL:L1B:0300:RESA

Rack B ACCL:L1B:0200:RACKB Rack B ACCL:L1B:0300:RACKB

Rack B RFS1 ACCL:L1B:0200:RFS1B Rack B RFS1 ACCL:L1B:0300:RFS1B

Rack B RFS2 ACCL:L1B:0200:RFS2B Rack B RFS2 ACCL:L1B:0300:RFS2B

Rack B PRC ACCL:L1B:0200:PRCB Rack B PRC ACCL:L1B:0300:PRCB

Rack B RES ACCL:L1B:0200:RESB Rack B RES ACCL:L1B:0300:RESB

5. Configuration Control
Any changes to critical software/firmware must go through an approval and tracking process. For LLRF,

this includes:

 RFS/PRC/RES firmware*

 lcls2_llrf software^

 EPICS ‘RF’ application (app booted by IOCs)^

o Note that any change to FEED EPICS support also requires a new release of RF

 Some specific scripts/configuration files (section 6.c,d)~

If you need to make changes:

1. Send an email describing your planned changes to this group:

Curt Hovater (hovater@jlab.org), Gary Croke (gcroke@jlab.org), Ramakrishna Bachimanchi

(bachiman@jlab.org)

2. Curt or Rama will create a JLab ATLis ticket.

3. Gary will review and approve.

4. Curt or Rama will work with Main Control to give you access.

5. Once you are done, notify the group and send the new version information:

* for firmware, we send file name and git commit ID (as reported by FEED)

^ for lcls2_llrf and RF EPICS app, we send the git tag name (gitlab and SLAC repos, respectively)

~ for these individual files, we send the SLAC repo CVS version number

mailto:hovater@jlab.org
mailto:gcroke@jlab.org
mailto:bachiman@jlab.org

6. File System Locations and Info

Probably need to know
a. lcls2_llrf:

/usr/local/lcls/package/lcls2_llrf (with submodules)

This is always a tagged ‘production’ version and is not treated as a sandbox. You may

need to temporarily modify something here so that an EPICS wrapper script will execute

your new version. Once testing is done, please commit/tag your changes. For more

general testing/development, please check out the repo into your own working area.

See Section 11 if you need to make changes here.

b. Kintex bitfiles:

/usr/local/lcls/tools/FEED/firmware/prc

/usr/local/lcls/tools/FEED/firmware/res_ctl

In each of these subdirectories, the ‘current’ symbolic link points to the version that is

loaded by the rack-checkout and resonance-init scripts. See Section 12 if you need to

use a new bitfile.

Hopefully won’t need to know
c. FEED launcher configuration file (needed for rack checkout, pulse control, cavity ramp,

etc.):

/usr/local/lcls/tools/FEED/config/rf_control_launcher_LERF.conf

d. Various wrapper scripts used for rack checkout/initialization:

/usr/local/lcls/tools/scripts/

rfInitResLcls2.sh

rfInitResLerf.sh

rfRackTestCommon.sh

rfRackTestLerf.sh

e. EDM files:

/usr/local/lcls/tools/edm/display

 ‘lerf’ or ‘llrf’ subdirectory

f. FEED EPICS module:

In addition to package/lcls2_llrf, FEED is also installed in the EPICS module area. In this

location, it is only used to provide EPICS libraries and databases to the RF EPICS IOC

application.

/usr/local/lcls/epics/R3.15.5-1.0/modules/FEED/<FEED-tag-name>

See Section 13 if you need to expose new FW registers via EPICS or to make other

changes to FEED EPICS support.

g. RF EPICS IOC application:

This is the application booted by the 2 LLRF IOCs:

/usr/local/lcls/epics/iocTop/RF/<RF-tag-name>

The ‘current’ symbolic link in the RF directory points to the in-use version. See Section

13 if you need to release a new version of RF.

7. Executing Non-Channel-Access Scripts
1. Halt communication between EPICS and the FPGA. This can be done per-chassis or per-rack

caput <prefix>:CTRL_HALT 1

2. ssh laci@<cpuname>

Hit carriage return

3. cd to your desired directory and do your work

If ‘python’ is not recognized (which may happen when entering a new shell):

source /usr/local/lcls/epics/iocCommon/facility/GoPythonLinuxRTEnvs.sh

Most areas of the file system are read-only from these CPUs.

You can write files to: /data/<cpuname>

4. When done, resume EPICS<->FPGA communication:

caput <prefix>:CTRL_RESET 1

8. EPICS LLRF Hardware Diagnostics
To get to the EPICS LLRF diagnostic screens:

Type lerfhome&

Click on box intersecting RF and L1B

Click Hardware… and select cryomodule of interest from drop-down menu

Or from individual cavity display, click Hardware…

Note that at LERF, RFS2 is above RFS1 in the rack. At SLAC, they are reversed.

RFS/PRC display:

 AMC7823 chip monitoring

 QF2 board monitoring

 CRC errors

Res/Intlk display does not have AMC7823 monitoring nor CRC errors

Rack checkout display:

 Run RFS/PRC Rack Init and Test: executes wrapper script that logs into the LLRF CPU and

runs lcls2_rack.sh. Click on Log… to view script output.

 Resonance/Interlock Initialize Chassis: executes wrapper script that logs into the LLRF

CPU and executes res_ctl.py -a <ip> -b <bitfile> -m <file>. This Log… file contains all

output from the FEED launcher (not just Res init)—so in the history, you’ll see rack

checkout, cavity ramp, pulse control, etc.

 Note that there are no automated checks of RFS<->RES communication. There is a

diagnostic display for you to manually check that status:

 The top row shows the RES status; the bottom the RFS status. In the ‘Rx’ sections, the

‘Link Error’ bit is set (blue) if there is a problem. (This is a snapshot of a working system.)

There is other useful data on this display too.

9. FEED ‘Launcher’
The FEED python launcher program provides the ability to use EPICS PVs to launch and provide

status for external scripts. There is a configuration file that defines the shell commands it runs

and their associated PV names (section 6c).

On any display that relies on the launcher, there is a red alarm if the launcher is off + a button to

a display from which you can restart it. *Note* that the launcher will not start if any of the PVs it

uses are offline.

If you press the Restart Daemon button but are prompted for a password, your account is not

authenticated to laci@lclsapp2. Ask Wesley Moore to remedy this.

Restart Daemon performs the following:

ssh laci@lclsapp2

/etc/init.d/st.rf_control restart

10. Change IP Address of FPGA board (QF2pre) or Program

‘Fresh’ FPGA board
Avoid two QF2pres with the same IP address on the LLRF internal network at the same time. So if you

need to swap IPs between two boards, called X and Y below, you should:

i. Halt communication between EPICS and relevant chassis

ii. Disconnect X from the LLRF network

iii. Update the IP address for Y (instructions below)

iv. Disconnect Y from the LLRF network

v. Reconnect X to the LLRF network

vi. Update the IP address for X

vii. Reconnect Y to the LLRF network

If it is an unconfigured chassis, then there are probably no collisions and you could leave the other

chassis connected during your work.

a. Following instructions from Section 7, halt communication between EPICS and relevant

chassis

b. Log into LERF workstation or server

(lcls01/2/3/ lclsapp1 with individual user id)

c. Log into cpu:

iocConsole <cpuname>

OR

ssh laci@<cpuname>

(If prompted for login, type ‘laci’ and hit enter.)

d. Change directory:

cd /usr/local/lcls/package/lcls2_llrf/software/submodules/qf2_pre

i. If it is a ‘fresh’ board still set to factory defaults:

su –

ifconfig eth1 192.168.2.31

ifconfig eth0 192.168.1.31

ping 192.168.1.127 (and verify response)

exit

python -m qf2_python.scripts.update_spartan_6_configuration -X -t 192.168.1.127 -s IPV4_UNICAST_IP=<newip>

python -m qf2_python.scripts.update_spartan_6_configuration -X -t 192.168.1.127-s IPV4_UNICAST_MAC=<mac>

python -m qf2_python.scripts.verify_spartan_6_configuration -X -t 192.168.1.127

python -m qf2_python.scripts.update_spartan_6_configuration -t 192.168.1.127 -s IPV4_UNICAST_IP=<newip>

python -m qf2_python.scripts.update_spartan_6_configuration -t 192.168.1.127 -s IPV4_UNICAST_MAC=<mac>

python -m qf2_python.scripts.verify_spartan_6_configuration -t 192.168.1.127

python -m qf2_python.scripts.update_spartan_6_configuration -X -t 192.168.1.127 -s AUTOBOOT_TO_RUNTIME=1

su –

ifconfig eth0 192.168.0.31

ifconfig eth1 192.168.1.31

exit

Then power-cycle chassis. Then:

ping <newip> (and verify response)

python -m qf2_python.scripts.verify_spartan_6_configuration -X -t <newip>

python -m qf2_python.scripts.verify_spartan_6_configuration -t <newip>

python -m qf2_python.scripts.reboot_to_runtime -t <newip>

ii. If it is a board previously in use and already has a 192.68.0.*** IP, an assigned

MAC, and AUTOBOOT_TO_RUNTIME set:

python -m qf2_python.scripts.update_spartan_6_configuration -X -t 192.168.1.127 -s IPV4_UNICAST_IP=<newip>

python -m qf2_python.scripts.verify_spartan_6_configuration -X -t 192.168.1.127

python -m qf2_python.scripts.update_spartan_6_configuration -t 192.168.1.127 -s IPV4_UNICAST_IP=<newip>

python -m qf2_python.scripts.verify_spartan_6_configuration -t 192.168.1.127

Then power-cycle chassis. Then:

ping <newip> (and verify response)

python -m qf2_python.scripts.verify_spartan_6_configuration -X -t <newip>

python -m qf2_python.scripts.verify_spartan_6_configuration -t <newip>

e. Following instructions from Section 7, reset communication between EPICS and relevant

chassis

f. Perform other checkout if desired/possible. For example, for a RFS or PRC, run prc.py or

run rack checkout.

11. New Version of lcls2_llrf
Create a git tag for your new version of the lcls2_llrf repo. Typical tag names are lerf-R0-0-<revision>.

Look at the tag list in git to choose your new tag name. Check out that new tagged version (section 6a):

 cd /usr/local/lcls/package/lcls2_llrf

 git pull

 git checkout <tagname>

12. New FW Version
To use a new version of the RFS/PRC or RES firmware, you’ll need to copy the bitfile to the appropriate

directory (Section 6b.) and update the ‘current’ symbolic link in that directory to point to your new

bitfile. Then run the appropriate initialization script (Section 8) to program the FPGA(s) with the new

bitfile(s).

13. Expose New FW Registers in EPICS
If the new firmware has new registers that must be exposed via EPICS, you’ll also need to create and

install new versions of the FEED EPICS module and RF EPICS IOC application. Typically Sonya Hoobler

make these changes, but in her absence, please use the contacts below.

a. Ask Carlos Serrano (cserrano@lbl.gov) or other expert to:

Create new versions of the FEED register substitutions file using the FEED leep command line

interface. At the LBL or SLAC test stand run these commands (example for RFS FW):

mailto:cserrano@lbl.gov

cd <FEED top>/src/python

python -m leep.cli leep://<ipaddress> template --short rfs_registers_short.substitutions

python -m leep.cli leep://<ipaddress> template rfs_registers.substitutions

and commit the updates files to the FEED LBL gitlab repo src/Db directory:

i. For RFS/PRC, the updated files will be:

 rfs_registers.substitutions

 rfs_registers_short.substitutions

ii. For RES, the updated files will be:

 res_registers.substitutions

 res_registers_short.substitutions

Make a new FEED tag with these changes. Look at RELEASE_NOTES.SLAC to choose an

appropriate new tag name. (Also please update RELEASE_NOTES.SLAC with info about the new

tag.) The FEED repo is in gitlab.lbl.gov. Contact Carlos for access, if needed.

git checkout master

git pull

git tag –a “SLAC tag for new FW version…” <tagname>

git push origin master

git push origin tag <tagname>

b. Ask Garth Brown (gwbrown@slacs.stanford.edu) or Carolina Bianchini

(carolina@slac.stanford.edu) to make a new tag of RF. RF is in the SLAC repo rf/RF.git.

Modify configure/RELEASE.local: change FEED_MODULE_VERSION to the new FEED tag name.

Push these changes to the git repo and make a new git tag.

c. In the LERF file system, check out the new tagged version of FEED (Section 6f) from the LBL

gitlab repository. Modify the top-level Makefile to comment out these lines:

DIRS += feedApp

feedApp_DEPEND_DIRS = configure src

 Then compile by typing ‘make’.

d. In the LERF file system, check out your new tagged version of RF (Section 6g) from the SLAC

repository. Compile by typing ‘make’. Update the ‘current’ symbolic link in the RF directory to

point to your new version. Then reboot sioc-l1b-rf01 and sioc-l1b-rf02

mailto:gwbrown@slacs.stanford.edu
mailto:carolina@slac.stanford.edu

14. Verify QF2-pre Network Settings
From John Jones:

I suggest you disconnect all but one board in the system then work through each board in turn, running:

python -m qf2_python.scripts.verify_spartan_6_image -X -t [CURRENT_IP]

for the bootloader settings and:

python -m qf2_python.scripts.verify_spartan_6_image -t [CURRENT_IP]

for the runtime, and make sure that:

a) The bootloader and runtime images have the same settings for IP and MAC.

b) That they are unique in the overall network.

