Open Charm Detection: Challenges and Capabilities Charles Hyde 11 May 2016

EIC@JLab Detector Overview

Full Acceptance

- Full Particle ID
- High resolution tracking in 3 Tesla field, 1m radial volume
- Endcap Hadronic Calorimetry
- Small angle dipole
- · GEMC simulation framework: Options for
 - GEANT4
 - Fast Monte-Carlo
 - But, no Analysis framework in place for EIC yet

Central Detector

Hadron ID

- e-EndCap: $180^{\circ} 32^{\circ} < \theta < 179^{\circ}$
 - pi/K/p up to ~10 GeV/c (e-beam limit)
 - Aerogel RICH + TOF
- Barrel 23° < θ < 148°
 - pi/K/p up to ~6 GeV/c
 - DIRC (1 mrad)
 - + TOF (<50ps)
- i-EndCap 3° < θ < 23°
 - pi/K/p up to ~50 GeV/c
 - TOF + Dual (Aerogel+CF₄) RICH

Lepton ID

- e-EndCap: 180°-32° < θ < 179°
 - e/pí: EMCal + Hadron-Blind (Cerenkov)
 - Transition Radiation option
- Barrel 23° < θ < 148°
 - e/pi:
 - EMCal
 - DIRC (0.5<p<1 GeV)
 - TRad?
- i-EndCap 3° < θ < 23°
 - e/pí: EMCal (+TRad?)
 - mu/pi: HCal (muon tracker needed?)

LHCb: PID

Fig. 17 Kaon identification efficiency and pion misidentification rate measured on data as a function of track momentum. Two different $\Delta \log \mathcal{L}(K - \pi)$ requirements have been imposed on the samples, resulting in the open and filled marker distributions, respectively

Fig. 18 Kaon identification efficiency and pion misidentification rate measured using simulated events as a function of track momentum. Two different $\Delta \log \mathcal{L}(K - \pi)$ requirements have been imposed on the samples, resulting in the open and filled marker distributions, respectively

Open symbols:
High Efficiency, low purity
Solid symbols:
Low Efficiency, High purity

Particle Fluxes

Short-Term Goals

Apply GEMC acceptance to Open Charm events

• Focus on $x_B > 0.05$

 Develop Fast Monte-Carlo parameterizations of Tracking Resolution, PID, Acceptance