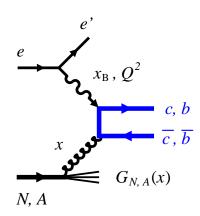
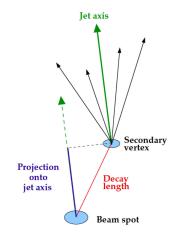

Large-x nuclear gluons with charm at EIC


S. Furletov, Yu. Furletova, Ch. Hyde, N. Sato, M. Strikman, C. Weiss, prepared for DIS2017

- Nuclear modification of gluons gives insight into NN interactions in QCD $x>0.3\leftrightarrow$ modified single-nucleon structure, $x\sim0.1\leftrightarrow$ pairwise NN interactions
- ullet Nuclear modification at large x poorly constrained by present data
- EIC: Limited information from inclusive F_{2A}, F_{LA}
- EIC: Heavy quark production as direct probe

Charm production rates at large x



- ullet Charm production rates drop rapidly at large x
- Charm production rates $\sim 10^5/{\rm bin}$ at $x \sim 0.1$ (int. lumi 10 fb⁻¹)
- \bullet Charm/DIS ratio \sim 2–3 % at $x\sim0.1$, increases with Q^2

Charm reconstruction methods at large x

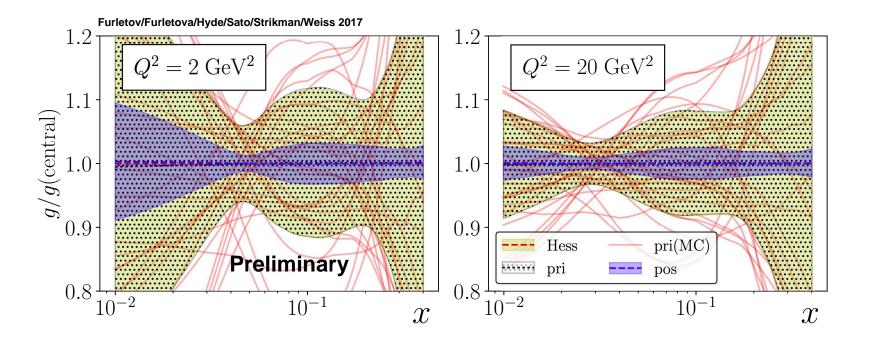
h_c	f	Decay	BR
D^0	59%	$K^-\pi^+$	3.9%
		$K^-\pi^+\pi^+\pi^-$	8.1%
D^+	23%	$K^-\pi^+\pi^+$	9.2%
D^{*+}	23%	$(K^-\pi^+)_{D0} \pi^+_{slow}$	2.6%
		$(K^-\pi^+\pi^+\pi^-)_{D0} \pi^+_{\text{slow}}$	5.5%
D_s^+	9%	$(K^{+}K^{-})_{\phi} \pi^{+}$	2.3%
Λ_c^+	8%	$pK^-\pi^+$	5.0%

Charm reconstruction using exclusive D-meson decays

 $D^{*+} \to \pi^+(\text{slow}) + (K^-\pi^+)_{D0}$ used at HERA w/o PID, efficiency < 1%. EIC PID + vertex detection allow use of other exclusive channels (D^0, D^+)

Total efficiency estimated $\sim 6\%$

• Charm reconstruction using inclusive modes with displaced vertex


D-meson decay length significance distribution used at HERA with vertex detector

Efficiency estimated at $\sim 30\%$ (E. Aschenauer et al., 2016)

Sys error estimate with simulations of track fitting & vertex reconstruction, in progress

• Charm reconstruction using high- p_T $c\bar{c}$ pairs

Charm impact on large-x nuclear gluon

- ullet Impact of F_{2c} pseudodata on EPS09 studied quantified using MC reweighting Method of CJ15 analysis. Verified equivalence with Hessian reweighting.
- Here: Assumed 10% total error, dominated by systematics, point-to-point
- Substantial impact on large—x nuclear gluons
- Possible to constrain large—x nuclear gluons with charm at EIC!