Charm and beauty production with EIC

E. Chudakov, D. Higinbotham, Ch. Hyde, S. Furletov, Yu. Furletova, D. Nguyen, M. Stratmann, M. Strikman, C. Weiss*, BEACH2016, George Mason U., June 12–18

- Electron-Ion Collider Energy, luminosity, detection
- Nuclear gluons at large x
 Nucleon-nucleon interaction in QCD
 Heavy quarks as direct probe
- Open charm/beauty with EIC
 Rates and background
 Charm identification
 New methods using PID
- More heavy-quark physics Exclusive $h\bar{h}$ production, Λ_h baryons

EIC: Energy, luminosity, detection

- CM energy $\sqrt{s_{eN}} \sim$ 20–100 GeV $Q^2 \sim {
 m few} \ 10 \ {
 m GeV}^2$ for DIS $x \gtrsim 10^{-3}$: gluons, sea quarks
- Luminosity $\sim 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ Rare processes, e.g. heavy quarks Multi-variable final states Polarization observables
- Proton and ion beams
 Polarized proton, light ions
- Next-generation detector concepts
 Central: Tracking, particle ID
 Forward: Target fragments

Nuclear gluons: Physics

- Nucleon's partonic structure modified in nucleus Seen in inclusive DIS
- Gluons suppressed at x > 0.3? "Gluonic EMC effect"

Modified nucleon structure?

- Gluons enhanced at $x\sim 0.1?$ "Antishadowing"

QCD structure of NN interaction?

Strong gluon shadowing observed at x < 0.01 suggests compensating antishadowing at $x \sim 0.1$ LHC ALICE J/ψ in ultraperipheral AA

• Limited information from Q^2 evolution... need direct probes!

Nuclear gluons: Heavy quark probes

• Heavy quark production in DIS

Calculated in QCD at LO, NLO; theory uncertainties quantified Laenen, Riemersma, Smith Van Neerven, Harris 93+. Kawamura et al. 12 Alekhin, Moch et al. 93+

Probes gluons at $x' > \frac{4M_h^2 + Q^2}{W^2}$ $(W^2 \gg Q^2)$

Excellent sensitivity to gluons even at $x'\gtrsim 0.1$

- Experimental identification of c, b through fragmentation into D, B mesons: Distinctive leptonic or hadronic decays (e.g. D^*), displaced vertex
- Observables: Differential cross section $d^4\sigma/dQ^2d\eta d^2p_T$, inclusive F_{2c}
- Measured at HERA H1 & ZEUS in ep at x < 0.01: Extensive studies, various identification methods, comparison with QCD calculations Latest analysis: Aaron et al. 2011, Abramowicz et al. 2014
- Can we use it for eA at large x with EIC? New challenges, new tools!

EIC: R&D program

- Adapt simulation tools to eA at EIC: HVQDIS MC, F_{2c} codes
- Assess experimental conditions for heavy quark production at EIC

Stage-1: Generic assumptions about HQ reconstruction

- Stage–2: Idealized simulations of HQ reconstruction including acceptance and background (PYTHIA)
- Stage-3: Realistic simulations including resolution from detector model
- Determine prospects for nuclear ratio measurements with EIC

Stat and sys errors, luminosity elimination, optimal choice of kinematics

Specifics of large $x \gtrsim 0.5$? Using beauty?

LDRD Project LD1601 "Nuclear gluons with charm at EIC," https://wiki.jlab.org/nuclear_gluons/

EIC: Charm and DIS rates

- Here 5 bins per decade in x, single bin in Q^2 (up to kinematic limit)
- Charm production rates drop rapidly at large x
- Charm production rates $\sim 10^5$ at $x \sim 0.1$ (integrated luminosity 10 fb $^{-1}$)
- Reasonable charm rates even at high x!

EIC: Charm to DIS ratio

• Charm to DIS ratio at large x grows with Q^2

- Charm to DIS ratio $\sim 5\%$ at $x\sim 0.1$ for $Q^2\sim {\rm several}~10~{\rm GeV}^2$
- High Q^2 improves charm/DIS ratio!

EIC: Charm reconstruction with D^*

- Fragmentation $c \rightarrow D^*$ with probability ${\sim}20\%$
- Identified through decays $D^{*+} \rightarrow \pi^+(slow) + D^0$ and $D^0 \rightarrow K^- + \pi^+$
- Extensively used at HERA does not require PID or vertex detection
- Overall efficiency < 1%
- Possible with EIC, but likely not sufficient at large *x*. Explore other identification methods!

EIC: Charm reconstruction using PID

- Pion/kaon identification at EIC allows use of other $D \rightarrow K^{\pm}\pi^{\pm}$ decay channels
- Substantially reduces combinatorial background DIS bckground to be included
- Potential efficiency $\sim 10\%$
- Vertex detection can further improve signal/background, but reduces overall efficiency

- Simulations in progress
- EIC enables new ways of charm reconstruction at large x!

EIC: Sensitivity to nuclear gluons

- Charm cross section at $x\sim 0.1$ shows good sensitivity to nuclear modification of gluon density at large x
- Measurement of $\sigma({\rm charm})$ with ${\sim}10\%$ accuracy would already reduce gluon uncertainty

JLEIC detector concept

JLEIC central detector lon beam from left at 50 mrad Electron beam from right

Central & forward detectors integrated with beam optics Ion beam from lower left Electron beam from upper right

• Energy ratio $E_e/E_p \sim$ 5–10 places large- $x \ c\bar{c}$ jets in central detector

Information on machine & detector design: https://eic.jlab.org/wiki/

More heavy-quark physics with EIC

• Exclusive production of heavy quarkonia $\gamma^{(*)} + p \rightarrow J/\psi + p$

Measures transverse spatial distribution of gluons in proton: Generalized parton distribution (GPD)

Quantifies color transparency of nuclear targets

- Heavy baryons in target fragmentation region $\gamma^{(*)} + p \rightarrow D + \Lambda_c + X$ Limiting case of open charm production Structure and decays of charmed baryons Can be measured with JLEIC forward detectors
- Heavy meson spectroscopy

Photo/electroproduction of XYZ states

Quantum numbers CP

Summary

- Nuclear modification of large-x gluons reveals QCD origin of NN interactions
- Prospect of direct measurements of nuclear gluons using heavy quarks at EIC
- New methods of charm reconstruction using π/K ID promise efficiency ${\sim}10\%$
- Luminosity $\sim 10^{34}~{\rm cm}^{-2}~{\rm s}^{-1}$ essential
- Other interesting heavy-quark physics with EIC

Further information

- Public Wiki at https://wiki.jlab.org/nuclear_gluons/ Simulation tools, results, materials, references
- Tools & results can be used for follow-up studies Please contact investigators!

Supplementary material

Sensitivity to gluon density

$$F_2^h(x, Q^2) = \int_{ax}^1 \frac{dx'}{x'} x' G(x') \hat{F}_g^h(x/x', Q^2, m_h^2, \mu^2)$$

coefficient function
$$a = 1 + \frac{4m_h^2}{Q^2}$$
 sets limit of x' integral

- Integrand localized in x' around lower limit ax
- Heavy quark production probes large-x' gluons "almost locally"

Charm structure function F_2^c

• F_2^c and ratio F_2^c/F_2 decrease rapidly with x

• Strong Q^2 variation of F_2^c at fixed x: Kinematic effect