SIDIS Simulations – Phase space and MC generation limits

Florian Hauenstein 06 July 2017

Simulation parameter

- ¹²C with $E_e = 10$ GeV and $E_A = 600$ GeV
- 1 Million events for each region ($Q^2 \le 10$ and $p_t \le 1$ GeV/c) -> total 4M events
- LO PDF sets and s-, sbar-, gluon-pdf = 0
- Event generation within:
 - $0.5 \text{ GeV/c} < p_e' < E_e^* 3 \text{ GeV/c}$
 - 0 GeV/c < p_h < 10 GeV/c
 - $0^{\circ} < \theta_{e} < 140^{\circ}$ but generation itself in cos(θ)
 - $0^{\circ} < \theta_{h} < 180^{\circ}$ but generation itself in cos(θ)
 - $0^{\circ} < \phi_{e/h} < 360^{\circ}$
- Cuts in event generation:
 - 0 < x < 1
 - $Q^2 > 1$
 - W > 2

MC: Generated to Accepted Ratio

- Slow generation of the events in interesting region Q^2 < 10 and p_t < 1 GeV/c
- A lot of misses, for 10,000 events accepted around 25M generated (factor 2500!!!)
- For $Q^2 < 10$ and $p_t > 1$ GeV/c, around 860k generated (quite efficient)
- For $Q^2 > 10$ and $p_t < 1$ GeV/c, around 2M generated
- For $Q^2 > 10$ and $p_t > 1$ GeV/c, around 40k generated (efficient)

-> Check of Phase Space coverage of interesting region

Full phase space (lab values, no weight)

Full phase space (lab values, wide x_B-cut)

 $0 < x_B < 0.3$ weighting only positive hadrons

negative hadrons look the same

$Q^2 < 10$ and $p_t < 1$ GeV/c (lab values, wide x_B cut)

0 < x_B < 0.3 no weighting only positive hadrons

Red Box: First or Last Bin with content > 0 +/- 5*binwidth per axis (if within generation limits)

 $0 < x_B < 0.3$ weighting only positive hadrons

negative hadrons look the same as well as deuteron and hydrogen

Updated MC Generation Limits

- Simulation with electrons limits
 - $0.5 \text{ GeV/c} < p_e' < 11 \text{ GeV/c}$
 - $0^{\circ} < \theta_{e} < 95^{\circ}$ but generation itself in cos(θ)
 - Rest not changed
- Phase space area about factor 4.5 smaller to previous one
- Now 5.5M events generated for 10,000 events accepted -> expected decrease by 4.5 (previous value was 25M)
- Note: For all the considerations I assumed fix beam energies (electron and per nucleon)
- Can we optimize more?
 - More realistic x cut
 - Q² and z dependence

$Q^2 < 10$ and $p_t < 1$ GeV/c (lab values, small x_B cut)

 $0.05 < x_B < 0.1$ no weighting only positive hadrons

 $0.05 < x_B < 0.1$ weighting only positive hadrons

-> generation limits couldbe well optimized further-> shall we do this???

Q² and z Dependence of Limits (for both x_B-cuts)

- Q² cut limits:
 - Q2_cut [9] = {2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.}
- z cut limits:
 - $z_cut[7] = \{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8\}$
- x cut:
 - 0 < x_B < 0.3 (wide)
 - $0.05 < x_B < 0.1$ (small)
- $p_t < 1 \text{ GeV/c}$

Generated Values for fix Q^2 and variable z (for $0 < x_B < 0.3$)

Generated Values for fix Q^2 and variable z (for $0 < x_B < 0.3$)

Generated Values for fix Q^2 and variable z (0.05 < x_B < 0.1)

Generated Values for fix Q^2 and variable z (0.05 < x_B < 0.1)

Hadrons weighting only positive hadrons

5.0 <= Q² < 6.0

Determined Limits for Q^2 and z ($0 < x_B < 0.3$)

No dependence on maximum electron momentum

Expected dependence of theta max on Q2

Determined Limits for Q^2 and z (0.05 < x_B < 0.1)

- No dependence on maximum electron momentum
- Almost no dependence of theta max on Q2 since binning too wide

Phase Space Fraction for Q² and z Bins

Fraction = $N_{bin}(z, Q^2) * 100 / N_{tot}(Q^2 < 10, p_t < 1, x_B-cut)$

Summary and Outlook

- MC can be optimized by changing limits of event generation
- For electron momentum and angle:
 - No dependence of limits on z
 - Expected dependence of limits on Q^2 and x_B

<u>To do:</u>

- Which generation limits shall we choose?
- Comparison of number of entry in one weighted histogram with MC integration of the same regions using GSL Library (or other one??)
- Determination of error from MC sampling (according to Charles' Note)

Extra Slides

$Q^2 < 10$ and $p_t < 1$ GeV/c (kinematic values, xbcut)

0 < x_B < 0.3 weighting only positive hadrons

negative hadrons look the same

Q² < 10 and p_t < 1 GeV/c (kinematic values, xbcut)

 $0 < x_B < 0.3$ weighting only positive hadrons

negative hadrons look the same