LD1601 Project Meeting 15-June-16

C. Weiss, LDRD Project "Nuclear gluons with charm at EIC," Meeting 15-Jun-16

- 1) Charm and DIS cross sections at large x and high Q^2 Estimates using LO QCD formulas and numerical phase space integration Comparison with PYTHIA (?)
- 2) Charge/flavor separation of nuclear quarks at $x \sim 0.1$ Physics motivation; NN interaction Simulation setup
- 3) Interfacing with GEMC simulations

Reply to reviewers' questions

Charm and DIS cross sections I

• Calculate differential cross sections using LO QCD formulas

$$d\sigma(e+N \to e'+X) = \operatorname{Flux}(x, y, Q^2) F_2(x, Q^2) \, dx \, dQ^2 \quad (1)$$

 $d\sigma(e + N \to e' + c\bar{c} + X') = \operatorname{Flux}(x, y, Q^2) F_2^{c\bar{c}}(x, Q^2) dx dQ^2$ (2)

• Integrate cross section over finite x and Q^2 bins

$$x$$
 from $[x_1,x_2]$
 Q^2 from Q_2^1 to kinematic limit $Q_2^2=xs_{eN}$ (corresponding to y = 1)

- Here $s_{eN} = 4000 \text{ GeV}^2$, corresponding to 10 on 100 GeV
- From cross section to rates: Multiply with integ. lumi 1 fb⁻¹ = 10^6 nb⁻¹

Charm and DIS cross sections II

- DIS cross section: Bjorken scaling implies $\sigma(\text{integrated}) \sim 1/Q_1^2$ 🗸
- Charm cross section: Non-trivial Q_1^2 dependence through partonic kinematics

Charm and DIS cross sections III

- Charm/DIS ratio grows linearly with $\log 1/x$, grows with Q^2
- Charm/DIS ratio \sim 5–7% at $x\sim 0.1$ and $Q_1^2\sim 100~{\rm GeV^2}$

Charm and DIS cross sections IV

- Cut on large Q^2 improves charm/DIS ratio significantly
- Charm rates still acceptable at $Q^2\gtrsim 100~{\rm GeV^2}$, decrease only slowly with Q^2
- Cross section & integration codes checked against HVQDIS
- PYTHIA results should be verified with these estimates

Charge-flavor separation of nuclear quarks

• EMC effect at x > 0.3?

Modified nucleon structure \leftrightarrow non-nucleonic DOF in nucleus

• Quark and gluon enhancement at $x\sim 0.1$ — antishadowing?

QCD structure of NN interaction: Quark or antiquark enhancement?

quark exchange

meson exchange

• Direct probes: Charm for gluon, semi-inclusive π, K for quark charge-flavor separation

Charge-flavor separation of nuclear quarks

• Semi-inclusive hadron production

Standard method for charge/flavor separation HERMES, COMPASS, JLab 6 + 12 GeV

LO, NLO implementation available

Simulation tools available: HERMES, JLab CLAS/Hall C, SOLID

• Adapt to eA at EIC

Nuclear effects contained in PDF - no explicit modeling (Fermi motion)!

• Apply to nuclear ratios at $x\sim 0.1$

Separate charge/isospin combinations with $N(\pi^+ \pm \pi^-)$

Fragmentation functions cancel in nuclear ratio. NLO effect?

Estimate final-state interactions by measuring on different nuclei and using A-dependence

Verification of detector simulations

Reviewers' question: How will the parameterized detector simulation be validated? Is it based on an existing program? Has it been investigated to use GEMC, for example, to build a geometry for the JLEIC toy detector concept that could be used with G4 for simple benchmarking studies?

8