SIDIS Simulation – Update

Florian Hauenstein 6 September 2017

Introduction

• Project: Nuclear modification of quarks from ratio

$$R(Q^{2}, z, x) = \frac{N_{C}(\pi^{+}) - N_{C}(\pi^{-})}{N_{d}(\pi^{+}) - N_{d}(\pi^{-})}$$

- Wanted: Error of the ratio = 1%
- Study with SIDIS simulation necessary statistics and systematic effects
- First step: MC sampling / integration error

Simulation parameter

- ¹²C with $E_e = 10$ GeV and $E_A = 600$ GeV, d with $E_A = 100$ GeV
- 500 Million events (already generated) for CTEQ ¹²C and d
- LO PDF set and s-, sbar-, gluon-pdf = 0
- Event generation within:
 - 8.5 GeV/c < p_e' < 10.5 GeV/c
 - 0 GeV/c < p_h < 10 GeV/c
 - $0^{\circ} < \theta_{e} < 25^{\circ}$ but generation itself in cos(θ)
 - $0^{\circ} < \theta_{h} < 180^{\circ}$ but generation itself in cos(θ)
 - $0^{\circ} < \phi_{e/h} < 360^{\circ}$
- Cuts in event generation:
 - 0.03 < x < 0.15 (0.05 < x < 0.1 cut applied later)
 - $Q^2 > 1$
 - W > 2

Q² and z Bins for SIDIS Ratio

- Q² cut limits:
 - Q2_cut [5] = {2.0, 4.0, 6.0, 8.0, 10.}
- z cut limits:
 - $z_cut[4] = \{0.2, 0.4, 0.6, 0.8\}$
- x cut:
 - 0.05 <= x_B <= 0.1
- p_t < 1 GeV/c (transversal to q)

Number of Events for 50M generated events

Calculation of MC Sampling / Integration Error

- Method 1 adapted from Numerical Recipes (Charles)
 - N events generated in phase space V with weights. Integral of function f (cross section) is

•
$$\frac{V}{N}\sum_{i}f(x_{i}) \pm \frac{V}{\sqrt{N}}\sqrt{\left[\frac{1}{N}\sum_{i}f^{2}(x_{i})\right] - \left[\frac{1}{N}\sum_{i}f(x_{i})\right]^{2}}$$

- Method 2 (adapted from Zhihongs Code):
 - Plot weighted Q2 distribution
 - Value = histo->GetSum() [ROOT]
 - Error = sqrt(sum (variance)) [done via ROOT]

\rightarrow Both calculations gave the same error

Deuterium Results on Weighted Cross Section (Count Rates) from 500M Events

 $\sigma(\pi+)$ - $\sigma(\pi-)$

¹²C Results on Weighted Cross Section (Count Rates) from 500M Events

 $\sigma(\pi+)$ - $\sigma(\pi-)$

	10					
Q2 (GeV ²)	-	259.1489 ± 0.7674	126.2519 ± 0.3972	48.8099 ± 0.171	1	
	8	438.9594 ± 1.5147	221.3129 ± 0.8006	88.0025 ± 0.3534	4	
	4	888.9973 ± 3.8592	473.2067 ± 2.1060	196.045 ± 0.9629	2	
		2623.2860 ± 17.8264	1572.8133 ± 10.5156	718.655 ± 5.2617	0	
	0.2	0	.4	0.6	.6 0.8	
			Z			

Previous Result for SIDIS Ratio - 50M Events

$$R(Q^2, z, x) = \frac{\boldsymbol{\sigma}_C(\pi^+) - \boldsymbol{\sigma}_C(\pi^-)}{6 * \boldsymbol{\sigma}_d(\pi^+) - \boldsymbol{\sigma}_d(\pi^-)}$$

Error from standard error propagation of individual weighted count rates

-> not sufficient statistic in each bin for error < 1%

Result for SIDIS Ratio with 500M Events

6 .2	I	0.4	0.6 0
	1.0000	1.0015	0.9996
	± 0.0096	± 0.0095	± 0.0104
4	1.0002	1.0011	0.9950
	± 0.0061	± 0.0063	± 0.0069
6	0.9992 ± 0.0049	$\begin{array}{c} \textbf{0.9995} \\ \pm \ \textbf{0.0051} \end{array}$	1.0014 ± 0.0057
	1.0004	0.9996	1.0005
	± 0.0042	± 0.0044	± 0.0050

$$R(Q^{2}, z, x) = \frac{\boldsymbol{\sigma}_{C}(\pi^{+}) - \boldsymbol{\sigma}_{C}(\pi^{-})}{6 * \boldsymbol{\sigma}_{d}(\pi^{+}) - \boldsymbol{\sigma}_{d}(\pi^{-})}$$

-> sufficient statistic for all bins that MC sampling error is < 1%

Resolution in Detector -Smearing of Momenta and Angle

Smearing Plots for $\Delta p/p_e = 1\%$, $\Delta p/p_h = 2\%$, $\Delta \theta_{e/h} = 2mrad$)

(similar for the pions)

Results of Smearing on x, z and Q²

-> Further study of bin migration

Next steps

- Smearing: Study systematics from bin migration
- More simulations with nuclear modification (EPS09) for C12
- Check results with half the events for π + and the other half for π -
- Calculation of necessary events (taking into account luminosity and run time) for required statistical error

Extra Slides

Generated Values for fix Q^2 and variable z (0.05 < x_B < 0.1)

Generated Values for fix Q^2 and variable z (0.05 < x_B < 0.1)

Hadrons weighting only positive hadrons

5.0 <= Q² < 6.0