SIDIS Simulation – Update

Florian Hauenstein 20 September 2017

Introduction

• Project: Quark-flavor decomposition from ratio

$$R(Q^{2}, z, x) = \frac{N_{C}(\pi^{+}) - N_{C}(\pi^{-})}{N_{d}(\pi^{+}) - N_{d}(\pi^{-})}$$

- Wanted: Error of the ratio = 1%
- Study with SIDIS simulation necessary statistics and systematic effects
- First step: MC sampling / integration error

Simulation parameter

- ¹²C with $E_e = 10$ GeV and $E_A = 600$ GeV, d with $E_A = 100$ GeV
- 500 Million events (already generated) for CTEQ ¹²C and d
- LO PDF set and s-, sbar-, gluon-pdf = 0
- Event generation within:
 - 8.5 GeV/c < p_e' < 10.5 GeV/c
 - 0 GeV/c < p_h < 10 GeV/c
 - $0^{\circ} < \theta_{e} < 25^{\circ}$ but generation itself in cos(θ)
 - $0^{\circ} < \theta_{h} < 180^{\circ}$ but generation itself in cos(θ)
 - $0^{\circ} < \phi_{e/h} < 360^{\circ}$
- Cuts in event generation:
 - 0.03 < x < 0.15 (0.05 < x < 0.1 cut applied later)
 - $Q^2 > 1$
 - W > 2

Q² and z Bins for SIDIS Ratio

- Q² cut limits:
 - Q2_cut [5] = {2.0, 4.0, 6.0, 8.0, 10.}
- z cut limits:
 - $z_cut[4] = \{0.2, 0.4, 0.6, 0.8\}$
- x cut:
 - 0.05 <= x_B <= 0.1
- p_t < 1 GeV/c (transversal to q)

Number of Events for 500M generated events

Calculation of MC Sampling / Integration Error

- Method 1 adapted from Numerical Recipes (Charles)
 - N events generated in phase space V with weights. Integral of function *f* (cross section) is given by

•
$$\frac{V}{N}\sum_{i}f(x_{i}) \pm \frac{V}{\sqrt{N}}\sqrt{\left[\frac{1}{N}\sum_{i}f^{2}(x_{i})\right] - \left[\frac{1}{N}\sum_{i}f(x_{i})\right]^{2}}$$

- Method 2 (adapted from Zhihongs Code):
 - Plot weighted Q2 distribution
 - Value = histo->GetSum() [ROOT]
 - Error = sqrt(sum (variance)) [done via ROOT]

\rightarrow Both calculations gave the same error

Deuterium Results on (weighted) Integrated Cross Section from 500M Events (sampling error shown)

 $\sigma(\pi+) - \sigma(\pi-)$ [nb]

10			:	
-	0.0864 ± 0.0003	0.0421 ± 0.0001	0.0163 ± 0.0001	
8	0.1464 ± 0.0005	0.0738 ± 0.0003	0.0293 ± 0.0001	
0	0.2963 ± 0.0013	0.1576 ± 0.0007	0.0657 ± 0.0003	
4	0.8744 ± 0.0059	0.5235 ± 0.0035	0.2396 ± 0.0018	
б.2	0.4 0.6			0.8
		<u> </u>		

¹²C Results on (weighted) Integrated Cross Section from 500M Events (sampling error shown)

0.8

Previous Result for SIDIS Ratio - 50M Events

$$R(Q^2, z, x) = \frac{\boldsymbol{\sigma}_C(\pi^+) - \boldsymbol{\sigma}_C(\pi^-)}{6 * [\boldsymbol{\sigma}_d(\pi^+) - \boldsymbol{\sigma}_d(\pi^-)]}$$

Error from standard error propagation of individual weighted count rates

-> not sufficient statistic in each bin for error < 1%

Result for SIDIS Ratio with 500M Events

$$R(Q^{2}, z, x) = \frac{\boldsymbol{\sigma}_{C}(\pi^{+}) - \boldsymbol{\sigma}_{C}(\pi^{-})}{6 * [\boldsymbol{\sigma}_{d}(\pi^{+}) - \boldsymbol{\sigma}_{d}(\pi^{-})]}$$

-> sufficient statistic for all bins that <u>MC sampling</u> <u>error</u> is < 1%

Event Rate Estimates

- Assuming luminosity 10^{-33} cm⁻²s⁻¹ = 1 nb⁻¹s⁻¹
- Calculate rates for integrated luminosity 1 fb⁻¹ and 0.1 fb⁻¹
- For each bin assume the integrated cross section from the 500M MC sample

Estimation for N(π +) – N(π -) for L = 1 fb⁻¹

Error is statistcal error

SIDIS Ratio for L = 1 fb⁻¹ for both Targets

2	0.4 0.6 z		
4	1.000	1.002	1.000
	± 0.004	± 0.004	± 0.005
	1.000	1.001	0.995
	± 0.007	± 0.008	± 0.010
	0.999	0.999	1.001
	± 0.010	± 0.011	± 0.016
8	1.000	1.000	1.001
	± 0.013	± 0.015	± 0.021
10		·····	;

$$R(Q^{2}, z, x) = \frac{N_{C}(\pi^{+}) - N_{C}(\pi^{-})}{6 * [N_{d}(\pi^{+}) - N_{d}(\pi^{-})]}$$

- Statistical error from standard error propagation of individual count rates
- Note: Error is dominated by deuterium error due factor 6

Resolution in Detector -Smearing of Momenta and Angle

Smearing Plots for $\Delta p/p_e = 1\%$, $\Delta p/p_h = 2\%$, $\Delta \theta_{e/h} = 2mrad$)

(similar for the pions)

Results of Smearing on x, z and Q²

-> Further study of bin migration and effects from limits in MC generation

Next steps

- Smearing: Study systematics from bin migration
- More simulations with nuclear modification (EPS09) for C12
- Check results with half the events for π + and the other half for π -
- Kaons?

Extra Slides

Generated Values for fix Q^2 and variable z (0.05 < x_B < 0.1)

Generated Values for fix Q^2 and variable z (0.05 < x_B < 0.1)

Hadrons weighting only positive hadrons

5.0 <= Q² < 6.0