Gluons with Charm: JLabFY2016-2017 LDRD Project

DETECTOR OVERVIEW OF THE JLAB EIC (JLEIC)

Charles Hyde Old Dominion University Norfolk VA, USA

20 Oct 2015

EIC@JLAB SITE PLAN

IP1: Full Acceptance Detector

IP2: Jets, ePHENIX Detector

C. Hyde, Gluons w/ Charm

21 Oct 2015

Interaction Point Optics

FOLLOWING J. BJORKEN'S VISION: Full Coverage: ion rapidity to *e*⁻ rapidity Uniform detector density per unit rapidity

DIS HADRONIC KINEMATICS: **xP+q**

 Maximum hadron momentum vs hadron angle in contours of constant Q² Or x_{Bj}

• Hadron momentum scales with z

DIS HADRONIC KINEMATICS: **xP+q**

- Projected π/K PID.
- 2 decades in x_{B}, Q^{2} .
- Kinematic points outside PID region are accessible for *z* < *1*.

MEIC CENTRAL DETECTOR WITH DUAL SOLENOID MAGNET (Geometrically compatible with 1.5 T CLEO Solenoid)

Electron End-Cap: •HBD (CF₄+UV-GEM) or TRD, •Aerogel RICH (Modular), •TOF(MRPC), •EMCal (Shashlyk+ inner PbWO₄)

MEIC CENTRAL DETECTOR WITH DUAL SOLENOID MAGNET (Geometrically compatible with 1.5 T CLEO Solenoid)

Barrel Region:

•DIRC (π ,K,p to ≤ 6 GeV/c), •TOF(MRPC), •EMCal (W or Pb sampling)

MEIC CENTRAL DETECTOR WITH DUAL SOLENOID MAGNET (Ion End-Cap Detectors)

•Dual RICH: Aerogel + CF₄ (Out-focussing 1- or 2-bounce mirror) •TOF(MRPC), •sampling EMCal, Hcal/Muon Tracker (CLEO)

ION FORWARD AND FAR-FORWARD REGIONS

- Forward Dipole (z=5.5m)
 - 2 T-m (scaled to 100GeV/c proton)
 - Flux exclusion for *e*-Beam
 - Acceptance $25 < \theta \le 80$ mr (relative to electron axis)
 - > 50cm Tracking space after magnet
- FFQ triplet acceptance:
 - ± 10 mr horiz, ± 14 mr vert, for $|\Delta p/p| \le 0.5$
 - 25 mrad cone (full opening) lineof sight to ZDC
- High Dispersion Focus @36m
 - Full Acceptance:
 0.5 > | ΔP/P| > 0.005
 or θ_{IP} > 4 mrad

END-CAP & FORWARD REGIONS

= 1.6

- 2 Tesla-m Dipole (z=5.5m)
 - (cf. For $\theta < 80$ mrad, Solenoid Bdl < 0.6 T-m)
 - Acceptance ± 90 mrad (relative to electron) (+40, -140 mrad to ion)
- **Full Reconstruction of Projectile Fragmentation**
 - High-P_T, and/or small -x_F (low rigidity)
 3.5 < η < 5

 - Mesons from decay of near exclusive N*, $\Lambda, \Sigma, \Lambda_C$?
- NN correlations in heavy nuclei

 P_T/P₁₁ < (1 GeV/c)/(40 GeV/c) = 25 mrad relative to ion-beam < 75 mrad relative to electron axis

Tracking

Regions

iFFO1

Dipole

 $\eta = 3$

 $\eta = 4$

Beam Pipe and Central Trackers

DETECTOR SUBSYSTEMS AND R&D EFFORTS

MODULAR RICH

Conceptual Design

- Compact π/k PID $p \le 10 \text{ GeV/c}$
- Flexible arrangement, can be projective to IP

EIC R&D eRD11

C. Hyde, Gluons w/ Charm

Final performance simulation : Efficiency and mis-ID VS momentum

HADRON BLIND DETECTOR(HBD)

- compact e/π PID detector
- Blind to hadron <4GeV with CF₄ gas at PHENIX

Tom Hemmick C. Hyde, Gluons w/ Charm

TOF (MRPC)

16

 $\Delta t = t_2 - t_1$ = 25 ps $\sigma_t = \Delta t / \sqrt{2}$ = 18 ps

EIC R&D UIUC eRD14

- compact PID detector
- Flexible arrangement, can be projective to IP and at barrel

MRPC PROTOTYPES ASSEMBLED

Two MRPCs assembled

All done at UIUC by eRD10 post-doc Ihnjea Choi

21 Oct 2015

C. Hyde, Gluons w/ Charm

17

EMCAL (SHASHLIK+CRYSTAL)

• Projective can help PID performance

EIC R&D eRD14

- Crystal calo near 180° (electron endcap) compensates lower tracking resolution
- Working with Crytur and SICCAS to qualify PbWO₄ production

C. Hyde, Gluons w/ Charm

GEANT4 DIRC Simulation: Narrow radiator bars grouped to common prism/photosensor array

- Standalone Geant4 simulation
 - Developed at GSI
 - Installed at JLab
 - Can be integrated with various frameworks (GEMC, eicROOT)

Close-up view of focal image with spherical 3-layer lens (no air gap) 21 Oct 2015

DIRC imaging: 3-Layer spherical Lens with Flat Focal Plane

- The prototype lens was matched to the existing GSI prototype prism
 - The focal plane can canted to align the sensors with perpendicular to the B-field.
- In the simulation, a wider prism is used, covering an entire bar box

C. Hyde, Gluons w/ Charm

FULL SYSTEM DIRC CHERENKOV ANGLE RECONSTRUCTION

• The per-track resolution *vs* track polar angle, for three assumptions of track incidence angular resolution.

• With a tracker angular resolution of 0.5-1.0 mrad and a sensor pixel size of 2-3 mm, the lens-based EIC DIRC will reach Cherenkov angle resolution close to 1 mrad corresponding to a $3\sigma \pi/K$ separation up to 6 GeV/c.

EIC R&D Milestone reached: The feasibility of a high-performance EIC DIRC has been demonstrated and using a compact readout "camera." 21 Oct 2015

C. Hyde, Gluons w/ Charm

SINGLE BOUNCE DUAL RICH:

- Aerogel with Fresnel lens ~75 cm focal length: image at focal point of mirror (also filter UV)
- CF₄ gas (visible + UV)
- 2nd mirror to place photo sensors in weaker field?

In contrast, ePHENIX and BEAST concept have in-focussing mirrors

C. Hyde, Gluons w/ Charm

21 Oct 2015