HyCal Cluster Reconstruction

- Algorithm: Island (Cellular Automaton)
- Pictorial description:
 - Each local maximum is being treated as virus
 - The virus spread until it reach module with no energy deposition, or a valley between two clusters
- Technically:
 - Sort the module energy array from high to low energy
 - Add the modules one by one along the sorted array
 - Before adding a module to a cluster, check its 8 neighbors, if none of those has been added, then the module is itself a local maximum
 - If some of the neighboring module has been added to clusters, find the maximum among them and add the module to the cluster that own the maximum

Current Data File: /home/xiongw/Research/PRad/PRadReconTest_Island/data/prad_001287.evio.6

							PRad Event View	er					- • ×
<u>F</u> ile	Online <u>M</u> ode	High <u>V</u> oltage	e <u>C</u> alibration <u>1</u>	ools					I	1		I	
													^
					1: 1.4 327 3	1:8.25529							
							Cluster	ID identi	fied from	Island			
				1: 1.85 <i>5</i> 7 3	1:95.9475	1: 70.7 361	Ene	rgy from	the modu	le			
					(
					1: 19.3698	1:77.3523	1: 7.89805						
									• Red ci	rcle: clust	er center	position	
					0. 19.4 385	0:63.369	0: 4.71155		calcula	ated with	Island alg	orithm	_
									Black	circle: clus	ster cente	r position	with
						\frown			5 by 5				
			0: 3.4095	0.9.32	0.78.5006	0: 581,662	0. 1 3.1984						
					(\smile)							
						\smile			I	1	I	I	
	0:	07 554 50	0: 0. 394 598		0. 7.49 347	0: 38.5471	0. 1.08867			4: 262912			
	0.	01 334 39								\bigcirc			
¢						_							ب
Curren	t Data File: /h	me/xionaw/Re	search/PRad/PRa	dReconTest_Island	d/data/prad_00128	37.evio.6							

						PRad Eve	t Viewer _	×
<u>File</u> On	iline <u>M</u> ode Higi	Voltage Calibra Image: Calibra Image: Calibra	tion <u>T</u> ools 1: 1.8557 3 O. 9. 32	1: 1.4 327 3 1: 9 5.947 5 0: 2 37 398 1: 16.99 58 0: 18.3556 1: 1.08 294 0: 78.5006	1: 8. 25529 1: 70.7 361 0: 306525 1: 74. 2871 0: 36.8646 1: 26. 504 5 0: 381,662	0. 1.49 54 1: 640265 0. 4.711 55 1: 0 0. 13.1984	 Cluster splitting at the vally Identify the neighboring modules from the two cluster Assume each module can be split for only once The splitting is between two most energetic clusters that share it Use shower profile of the more energetic cluster to calculate expected energy on the share modules Assign the expected energy to the bigger cluster. The leftover goes to the smaller one 	
	0: 0.07 554 59	0: 0. 394 598		O. 7.49 347	0: 38.5471	0: 1.08867	4: 26212 4: 26212	

Current Data File: /home/xiongw/Research/PRad/PRadReconTest_Island/data/prad_001287.evio.6

							PRad E	vent Viewer		_ _ ×
<u>F</u> ile	Online <u>M</u> ode	High <u>V</u> oltage	<u>C</u> alibra	tion <u>T</u> ools		0: 1.7 3002				
						0: 1.71 365	0: 5.9 5744	0: 3.07644		 Leakage correction Triggered if a module of a cluster i at the edge of HyCal or the centra hole
						0: 10.4188	0. 81.6249	0. 20.06	0. 1.15206	 Use profile and make imaginary cells around the edge Calculate expected energy on the imaginary cells and add them to
					0. 1 3. 399 2	0: 11.13/3	0. 80 × 235 0. 17. 2/44	0. 30.6855	0, 1, 3089 3	 This is a iterative process
							0: 287128	0. 2.1 514		
							-			
< Curren	t Data File: /ho	l me/xiongw/Res	earch/PR	ad/PRadReconT	est_Island/data/pra	ad_001287.evio.6	1			■

						PRad Event Viev	ver					-	o x	
<u>F</u> ile Online <u>N</u>	<u>1</u> ode High <u>V</u> oltag	e <u>C</u> alibration	Tools											
													^	
				0. 1.29 305	0. 1.00657									
								• Dead n	nodule co	rrection			_	
				0.17.2/43	0: 7.802/8	0. 265083		 Condition and process similar to leakage correction 						
				0, 60, 5004	0.502108	0. 21.2796								
			0. 6. 297 55	0: 25: 3107	0.41.1806	0: 5:20042								
				0: 8.00691		0: 1.4088		2 2401.24						
¢													2	
Current Data Fil	e: /home/xiongw/R	esearch/PRad/PR	adReconTest_Islan	d/data/prad_0012	87.evio.6									

Clustering Near Transition Region

- The is no program in turns of identifying the modules of a cluster at the transition region
- The problem comes when we are trying to use the shower profile to do various calculation (expected energy and chi2)
- shower shape for both LG and PWO should be quite similar, if weighted by the Moliere radius
- Calculate the distance between the cluster center and the destination position, split it at the transition boundary, and use the potion of the distance in each region as weight
- Finally, to take into account the slight difference between the LG and PWO profiles, take the weighted average again between the two profiles
- No transition region: Profile is in a form of $P_{LG}(d/R_{LG})$ or $P_{PWO}(d/R_{pwo})$
- At transition region: Profile is in a form of $P_{LG}(a*d/R_{LG} + b*d/R_{PWO})$ or $P_{PWO}(a*d/R_{LG} + b*d/R_{PWO})$
- To take into account the difference between the two profiles:
 - $(a/d)*P_{LG}(a*d/R_{LG} + b*d/R_{PWO}) + (b/d)*P_{PWO}(a*d/R_{LG} + b*d/R_{PWO})$