Contents

- Using moller events to determine beam position for each run. Table is currently at: /work/hallb/prad/xbai/offset/offset.txt
- Efficiency update from calibration data.

New organization:

The least run will be chosen as the default offset # Lists the origin offsets of detectors to beam center and the tilting angles # Units are in mm and mradian

#	run	detector	x_origin	y_origin	z_origin	x_tilt	y_tilt#	z_tilt
	1123	PRadGEM1	-0.552455	-0.162949	5304	0	0	- 0
	1123	PRadGEM2	-0.894915	-0.358795	5264	0	O	0
	1123	HyCal	1.01244	0.652137	5817	0	0	0
	1125	PRadGEM1	0.51515	-6.76916	5304	0	0	0
	1125	PRadGEM2	0.17732	-6.95296	5264	0	0	0
	1125	HyCal	2.12307	-5.91165	5817	0	0	0
	1126	PRadGEM1	-0.529138	-0.0713081	5304	0	0	0
	1126	PRadGEM2	-0.868931	-0.263425	5264	0	0	0
	1126	HyCal	1.16641	0.730456	5817	0	0	0
	1127	PRadGEM1	-0.550107	-1.59799	5304	0	0	0
	1127	PRadGEM2	-0.892663	-1.79354	5264	O	0	0
	1127	HyCal	1.2307	-0.75634	5817	0	0	0

Detector origin coordinates in beam frame.

For each run, there's fitting histograms for you to check.

Average beam position determined by GEM detector

Runs not included yet : 1136, 1137, 1345, 1405, 1498.

Spots Scanned

Comments on calibration data

- Calibration data is different from production data, the current matching may not work properly on calibration data.
- Production, ep and ee events → each HyCal cluster induced by one electron: only one real GEM cluster matching with it.
- In Calibration, things are different, GEMs are detecting electrons converted from photons in scintillators.
- Mostly pair production, two electrons separated by 2~10 mm. GEMs can distinguish these different electrons, but HyCal cannot, sees both as one cluster.
- So in some cases, for each cluster on HyCal, there will be more than one real GEM clusters which can match with them.
- Calibration data is not very proper for GEM efficiency calculation. We will see a higher than reality value.
- X cluster and Y Cluster match ambiguity.

Comments on calibration data

- Estimate the events ratio between 1), photon ionization, 2), Compton effect, 3), pair production.
- Photon ionization won't induce signals on gem, but can induce signal on Scintillator and HyCal.
- Compton effect electrons depends on electron energy.
- Pair production induces signal on both.
- Efficiency we calculate is inflated by pair production, and reduced by Compton.

$$Eff_{cali} = R_{pair} \times (1 - (1 - Eff_{real})^2) + R_{forward compton electron} \times Eff_{real}$$

These do not represent the resolution of HyCal, because due to two combined showers due to e-e+ pair.

These do not represent the resolution of HyCal, because due to two combined showers due to e-e+ pair.

- This plot shows how many GEM clusters were found in a 60 mm circle during matching.
- Expect to see more clusters due to pair production, in calibration.
- More than 50% cases there are >=2 clusters matching. Which means >50% of matching is unreliable.
- · This is very different with production data.
- Production data is much cleaner.

X axis: Number of matching gem clusters

Efficiency vs Searching Radius

Radius of searching Circle

Matching radius: 10mm.

No HyCal energy cut in this plot,

error bars < 0.1%, hided by the triangle mark.

Summary Run 982

eff vs. searching radius

detection efficiency (%)

0.8

0.6

0.4

0.2

0

Summary Run 988

detection efficiency (%)

0.8

0.6

0.4

0.2

0

searching radius(mm)

Summary

- Need to get GEM detection efficiency from calibration run.
- Using (# GEM clusters)/(# HyCal clusters) gives rough value, not correct value.
- Need to be corrected by pair production factor, Compton factor, HV sector/Spacer factor. (May need Geant simulation for this).
- Cross check with the efficiency results from production runs.
- Production data is cleaner than calibration data for efficiency calculation.