

The PRad Experiment

Maxime Levillain

September 1, 2017

Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performance

Analysis

Summary

Outline

The Proton Radius Puzzle

Different Methods of Measurement Elastic *ep* Scattering New Experiment Needed

PRad Setup

Detectors Performance

Analysis

Summary

Measurements of Form Factors

- ▶ First measurement at SLAC in 1961 through *ep* scattering
- ▶ 60 years of measurements, 4 possible different methods

Atomic Hydrogen Spectroscopy

Lamb shift measurements by MPQ and LKB

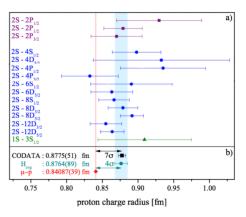
ep Scattering

Accelerator based experiments at Mainz, SLAC, JLab, etc

Muonic Hydrogen Spectroscopy

Lamb shift measurements by CREMA

μp Scattering


Future experiment PSI/MUSE

Spectroscopy Results

Lamb shift measurements

- atomic hydrogen spectroscopy results compatible with ep scattering results
- muonic hydrogen spectroscopy results at 0.84 fm

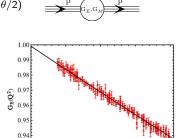
Elastic ep Scattering

Elastic cross-section in the liit of the first Born approximation:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \frac{E'}{E} \cdot \frac{1}{1+\tau} \cdot (G_E^{n2}(Q^2) + \frac{\tau}{\epsilon} G_M^{n2}(Q^2))$$

with:

WITH:
$$Q^2=4EE'\sin^2\theta/2$$
 $au=rac{Q^2}{4M_p^2}$ $\epsilon=1/(1+2(1+ au) an^2\theta/2)$


$$\left(rac{d\sigma}{d\Omega}
ight)_{Mott} = rac{lpha^2(1-eta^2\sin^2\! heta/2)}{4k^2\sin^4\! heta/2}$$

 G_F can be expressed using a Taylor expansion at low Q^2 :

$$G_E = 1 - \frac{Q^2}{6} < r^2 > + \frac{Q^4}{120} < r^4 > + \dots$$

which gives:

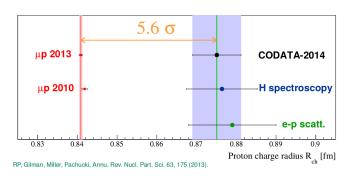
$$< r^2 > = -6 \cdot \frac{dG_E^p}{dQ^2} \Big|_{Q^2 = 0}$$

Phys. Rev. C 93, 065207

0.010

O2 (GeV2)

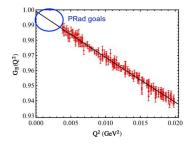
0.015


0.020

0.005

0.93 0.000

The Proton Radius Puzzle


$$r_p(e^-) = 0.8770 \pm 0.0045$$
 fm $r_p(\mu^-) = 0.8409 \pm 0.0004$ fm

 Discrepancy between muonic hydrogen spectroscopy and atomic hydrogen (spectroscopy and scattering) measurements

The PRad Experiment

- Previous measurements have large systematic uncertainties and a limited coverage at small Q^2
- Requirements for PRad Experiment:
 - ▶ large Q² range
 - extend to very low Q²
 - controlled systematics at sub-percent precision
- Choices:
 - Non magnetic spectrometer method
 - No target windows
 - high resolution high acceptance spectrometer
 - Normalization by Møller cross-section

Phys. Rev. C 93, 065207

PRad Timeline

•	2011 - 2012 2012	Initial proposal Approved by JLab PAC39
•	2012	Funding proposal for windowless H_2 gas flow target
•	2012 - 2015	Development, construction of the target
•	2013	Funding proposals for the GEM detectors
•	2013 - 2015	Development, construction of the GEM detectors
•	2015, 2016	Experiment readiness reviews
•	January/April 2016	Beam line installation
•	May 2016	Beam commissioning
•	May 24 - May 31	Detectors calibration
•	June 4 - June 15	1.1 GeV data taking
•	June 15 - June 22	2.2 GeV data taking

Outline

The Proton Radius Puzzle

PRad Setup

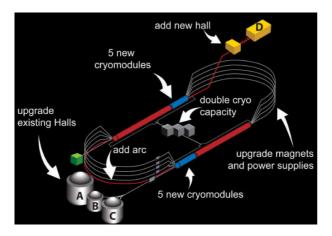
JLab Facility
PRad Setup
Windowless Gas Flow Target
Hybrid Calorimeter
GEM detectors

Detectors Performance

Analysis

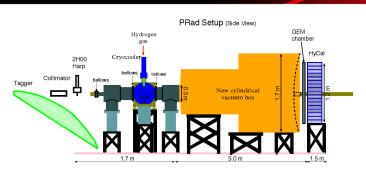
Summary

JLab Facility



PRad was performed in Hall B at JLab

JLab 12GeV Upgrade


► First experiment finished using 12 GeV accelerator (not at full beam energy)

PRad Setup

- lacktriangle Electron beam or tagged photon beam at ~ 1 GeV and ~ 2 GeV
- ▶ Windowless *H*₂ gas flow target
- Vacuum box

- ► GEM detectors
- Primex HyCal

Windowless H₂ Gas Flow Target

- gas target of cryogenically cooled hydrogen at 19.5 K
- beam opening: 2 mm, length: 4 cm
- cell density: $\sim 2 \cdot 10^{18} \text{ H atoms/cm}^2$
- pressures:
 - cell pressure: 471 mTorr
 - chamber pressure: 2.34 mTorr
 - vacuum chamber pressure: 0.3 mTorr

Developed and build by JLab target group



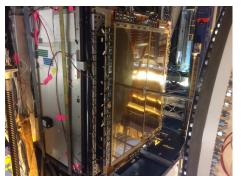
Vacuum Box

- ▶ 1.7 m diameter, 2 mm aluminum vacuum window
- \rightarrow Limited background

Primex HyCal

Hybrid detector:

- ► Central part:
 - ▶ 34 x 34 matrix of PbWO₄ detectors
 - ▶ dimension of block: 2 x 2 x 18 cm³
 - 2 x 2 blocks removed from the center for beam line to pass through
- Peripheral part:
 - ▶ 576 lead glass detectors
 - dimension of block: 4 x 4 x 45 cm³
- ► Successfully used for Primex experiments



GEM Detectors

- ► Two large area GEM detectors: 55 cm x 123 cm
- Purpose:
 - ightharpoonup improve spatial resolution by a factor 20 to 40 ightarrow 100 μ m
 - \rightarrow to reduce uncertainties on θ and Q^2
- Central overlap between the 2 planes and central hole for the beam line

Developed and build by UVA

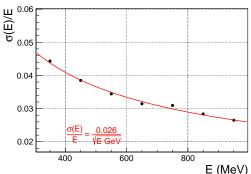
Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performance

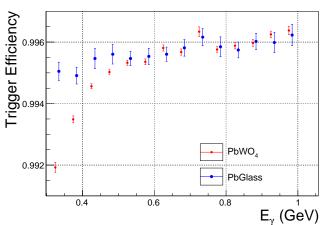
HyCal Energy Resolution Trigger Efficiency GEM Matching Efficiency GEM Spatial Resolution


Analysis

Summary

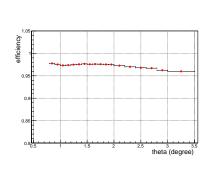
HyCal Energy Resolution

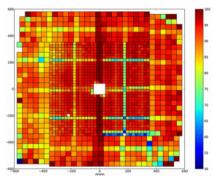
Crystal energy resolution with statistical uncertainties



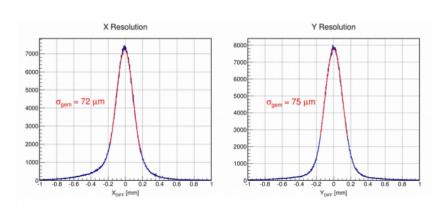
- Achieved expected energy resolution:
 - ▶ 2.5% at 1 GeV for crystal part
 - ▶ 6.1% at 1 GeV for lead glass part

Trigger Efficiency




- Plateau from 500 MeV with an efficiency of 0.995
- Good uniformity

GEM Matching Efficiency


21 / 32

- ▶ GEM detection efficiency measured in both photon beam calibration (pair production) and production runs (ep and ee)
- ► Almost flat efficiency > 97% after removal of spacers and dead zones

GEM Spatial Resolution

- ▶ Really good spatial resolution \sim 74 μm
- ▶ 20 to 40 times better than HyCal spatial resolution

Outline

The Proton Radius Puzzle

PRad Setup

Detectors Performance

Analysis

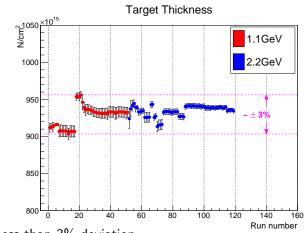
Stability

Yields

Cross-sections

Summary

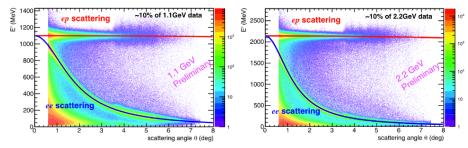
Data Collected


- Calibration with tagged photon beam
 - Every calorimeter module moved into the beam
 - ► Allows study of resolution, linearity, trigger efficiency
- ▶ 1.1 GeV electron beam
 - ▶ 4.2 mC
 - ▶ 604 M events with target
 - 53 M events with "empty target"
 - 25 M events with ¹²C target for calibration
- 2.2 GeV electron beam
 - ▶ 14.3 mC
 - ▶ 756 M events with target
 - ▶ 38 M events with "empty target"
 - ▶ 10.5 M events with ¹²C target for calibration

Target Stability

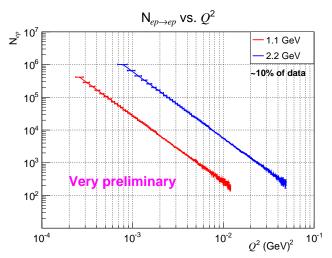
Control of target properties (pressure, temperature, position)
 via EPICS

→ Less than 3% deviation


Weizhi Xiong

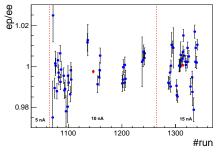
25 / 32

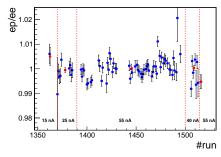
Phase Space



Phase space after background subtraction

▶ Separation of ep and Møller phase space (for $\theta > 0.85 deg$ for 1 GeV)


- ▶ 1.1 GeV data set: $Q^2 \in [2 \cdot 10^{-4}, 1.3 \cdot 10^{-2}]$ GeV²
- ► 2.2 GeV data set: $Q^2 \in [8 \cdot 10^{-4}, 6 \cdot 10^{-2}]$ GeV


27 / 32

Yields Stability

 Stability of ratio ep/ee after background subtraction for different beam intensity

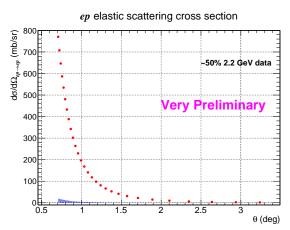
Good stability for the 2GeV period

Extraction of Cross-section

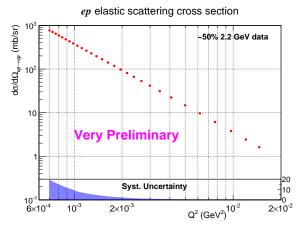
▶ Normalization of *ep* cross-section by Møller cross-section:

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} = \frac{\textit{N}_{exp}(ep \rightarrow ep \ in \ \theta_i \pm \Delta\theta)}{\textit{N}_{exp}(ee \rightarrow ee)} \cdot \frac{\epsilon_{geom}^{ee}}{\epsilon_{geom}^{ep}} \cdot \frac{\epsilon_{det}^{ee}}{\epsilon_{det}^{ep}} \cdot \left(\frac{d\sigma}{d\Omega}\right)_{ee}$$

- Several event generators have been developped for ep and Møller scattering taking into account complete calculations of radiative corrections beyond ultra relativistic approximations
 - ▶ A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
 - ▶ I. Akushevich et al., Eur. Phys. J. A 51(2015)1
- Geant4 is used to take into account all external radiative effects


$$\sigma_{ep}^{\textit{Born}} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{\textit{exp}} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{\textit{sim}} \cdot \sigma_{ee}^{\textit{Born}}$$

Preliminary ep Cross-section


- ▶ Preliminary *ep* cross-section for the 2.2 GeV data set
- lacktriangle Statistical uncertainties at $\sim 0.2\%$ per point
- lacktriangle Conservative point-to-point systematic uncertainties at $\sim 2\%$

Preliminary ep Cross-section

- Preliminary ep cross-section for the 2.2 GeV data set
- lacktriangle Statistical uncertainties at $\sim 0.2\%$ per point
- lacktriangle Conservative point-to-point systematic uncertainties at $\sim 2\%$

31 / 32

Summary

Jefferson Lab

- ► The PRad experiment was uniquely designed to address the Proton Radius Puzzle
- ▶ The experiment was successfully performed in May-June 2016
- ▶ Wide range of Q^2 without normalization on more than two orders of magnitude $(2 \cdot 10^{-4} \text{ GeV}^2 \text{ to } 6 \cdot 10^{-2} \text{ GeV}^2)$
- ▶ Lowest Q^2 data set of ep elastic scattering $(2 \cdot 10^{-4} \text{ GeV}^2)$
- First preliminary extraction of the proton radius expected at the end of October

Thanks to JLab, Hall B, Accelerator Division and Target Group

PRad is supported in part by NSF MRI award PHY-1229153, as well as DOE awards for GEM; my research work is supported by NSF awards: PHY-1506388 and PHY-0855543

