Proton Charge Radius Experiment (PRad) at JLab Hall B

CLAS2013

On behalf of the PRad collaboration

Chao Peng

Duke university

11/22/2013

Outline

- Physics motivation
- PRad experiment
 - Experimental apparatus
- Simulations for PRad
 - Target simulation
 - Background study
 - Radiative corrections
 - Radius extraction
- Current status and future plan

Physics motivation

- Protons and neutrons are the primary building blocks of the atomic nucleus. Proton charge radius is a fundamental quantity important to QCD and QED
- How to experimentally determine the proton charge radius?
 - Electron-proton elastic scattering measurements
 - Hydrogen Lamb shift measurements (electronic or muonic)
- In scattering experiments, at very low Q², rms charge radius is given by

$$\begin{aligned} G_E^p(Q^2) &= 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots \\ \frac{\langle r^2 \rangle}{6} &= - \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0} \end{aligned}$$

Proton Bag of quarks and gluons

Physics motivation

- The proton charge radius puzzle was raised by the Lamb shift measurement of muonic hydrogen at PSI^{1, 2}
- PSI value is the most precise (0.05%), but 7σ away from CODATA value³
 - CODATA value: a compilation of world data from e-p elastic scattering measurements and hydrogen Lamb shift measurements
- Discrepancy is not understood yet. New experiments with different systematics are needed
- 1. R. Pohl, A. Antognini, F. Nez, *et al.*, Nature 466, 213 (2010).
- 2. A. Antognini, F. Nez, K. Schuhmann, et al., Science 339, 417 (2013).
- 3. P.J. Mohr, B.N. Taylor, and D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

4. I. Sick, Phys. Lett. B 576, 62 (2003).

- 5. J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010).
- 6. X. Zhan et al., arXiv 1102:0318v2 [nucl-ex] (2011).

4

PRad experiment

- Non-magnetic and calorimetric experiment
- Very low Q², never reached by electron scatt. experiments, 2 × 10⁻⁴ – 2 × 10⁻² (GeV/c)²
- Windowless gas-flow target
- e-p cross sections normalized to the well known Møller process

Experimental apparatus

- Windowless gas-flow target
 - Removed the typical background source: target windows
 - Vertical tube as gas-inlet
 - Horizontal tube with the opened end-caps
- Expected target thickness ~10¹⁸ atoms/cm² at 25 K
- Minimized thickness of the tubes to reduce the background from beam halo

Experimental apparatus

- High resolution hybrid calorimeter (HyCal)
 - Built by the PrimEx collaboration at Jlab
 - PbWO₄ crystal + lead glass
- Central part (crystal) resolution
 - $\sigma_E/E = 2.6\%/\sqrt{E}$, $\sigma_{x,y}/E = 2.5 \ mm/\sqrt{E}$
- 5 meters away from the target
 - Detection angle up to 4 degree for the central part

Work by Y. Zhang (Duke)

Target simulation

- Target density was studied by COMSOL Multiphysics
- Surface pressure of the chambers
 - 1^{st} stage: 6×10^{-4} torr
 - 2nd stage: 9 × 10⁻⁶ torr, satisfies beam line vacuum requirements
- Gas density and target thickness
 - Target thickness at center: 3.42×10^{18} H/cm²

Background study

- Full simulation based on Geant4
- The primary background source is the electron-nuclei scattering of beam halo from the target structure
- Minimize the background: Subtraction from the empty target run

Background study

• Need about 20% beam time for the empty target run for the best subtraction

- Statistical uncertainties: 0.06% to 0.50% for 12 angular bins ranged from 0.8 degree to 3.8 degree
- Assuming 1% systematic of the monitored beam charge, it results in a 0.37% systematical uncertainty in the subtraction

Radiative corrections

- Event generators including radiation effects of e-p and e-e scattering were developed
- Go beyond the ultra-relativistic approximation (URA, m_e² << Q²)

Work by M. Meziane (Duke)

Radiative corrections

- Angular distributions of real photons
 - Most are at very forward angles, < 5 deg

Radius extraction

- We are trying to extend the Q² coverage for a higher precision
 - Use the lead glass part of the calorimeter, increasing detecting angle from 4 degree to 10 degree
 - Exploring options to have a higher beam energy (e.g. 3.3 GeV beam)
- Assumed 0.6% systematics for measured cross-sections in simulation (dipole fit, r_p = 0.8768 fm as the input)

Radius extraction

• The precision of the extracted radius is expected to be sub-percent

Current status and future plan

Current status

- Hardware
 - Major components of target are procured or being procured. Pumps, chiller and cryocooler have already been at Jlab. Orders of 3D positioner and chambers are placed
 - Design of vacuum box and stands started
 - Preliminary DAQ system design

Software

- Target simulation completed
- Full Geant4 simulation with event generators including radiative corrections to both ep and Møller processes is near completion
- DAQ software is being developed

Future plan

- General
 - Finalize design/desired schedule/beam requirements
 - Verify running compatibility with 12 GeV installation and HPS.
- Hardware
 - Test HyCal
 - Final setup of the beamline
- Software
 - More studies with the full simulation code
 - Complete DAQ software

Thank you

• The project is supported by U.S. Department of Energy under contract number DE-FG02-03ER41231 and NSF MRI award PHY-1229153

PRad Collaboration JLab experiment E12-11-106	
Jefferson Lab	Old Dominion University
NC A&T State University	University of Kentucky
Duke University	College of William & Mary
Idaho State University	Argonne National Lab
Mississippi State University	Hampton University
Norfolk State University	University of New Hampshire
University of North Carolina at Wilmington	Tsinghua University