HyCal Physics Calibration – Non-Linearity

- A linear calorimeter has a constant response (average signal per unit of deposited energy)
- Electromagnetic calorimeters are in general linear, if not linear might due to instrumental effects (saturation, leakage...) (see www.roma1.infn.it/people/bini/seminars.lecture2.pdf)
- But this is not the case for HyCal, we need the non-linearity correction in order to have unbiased distribution for ee and ep at the same time

How to Deal With the Non-Linearity Problem

- Method I: Parameterization functions
 - Using Parameterization function to describe the non-linearity behavior
 - Require rather uniform non-linearity behavior for all modules
 - May need multiple parameterization functions (LG, PWO, transition non-linearity behavior not the same)
 - Ilya has shown that it works for PWO part at 2.2GeV in the collaboration meeting
 - Might not work well if non-linearity behavior is highly localized

Using Parameterization Functions

How to Deal With the Non-Linearity Problem

- Method II: Obtain non-linearity constant module by module
 - For each module, obtain two calibration constants, one from ep and the other from ee
 - Similar to what we did with the snake run, for each module:

$$E_{Corr} = \frac{E_{Recon}}{1 + \alpha (E_{Recon} - E_{Cali})}$$

- E_{cali} is the calibration energy that we used to calibrate the module, E_{recon} is the reconstructed energy on this module, alpha is the non-linearity constant
- For physics calibration, we only have two points for each module, one from ee and the other from ep
- One of the two points need to be used as the calibration energy, so we are basically solving equation, not even fitting
- This doesn't work if the module is missing one of the two points (happen quite often near edge and corner)
- Currently, I have two sets of calibration constants for run 1288 ~1345, each after 5 iterations

0.05

0

8

Sigma of (E Recon / E Eexpect) for <mark>ee</mark> calibration

• Solving the following equation to get alpha:

$$\alpha = \frac{\frac{E_{Recon}}{E_{Expect}} - 1}{\frac{E_{Recon}}{E_{Recon} - E_{Cali}}}$$

- E_{recon}/E_{expect} very close to the ratio between the two calibration constans
- E_{recon} and E_{cali} obtained from fitting energy distribution of each module

Compare Non-linearity Constants

Applying the Non-linearity Constants

Resolution PWO for ep Events

Resolution Transition for ep Events

Resolution LG for ep Events

Module by Module Comparison

Start with calibration constants from ep

Module by Module Comparison

Start with calibration constants from ep

Calibrating the Inner Modules

- Inner modules are behind collimator, hard to calibrate directly
- But we can use the shower profile and the tail of a cluster hitting module right next to them
- For particle hitting the center part of a module, the profile should be symmetric (other than the effect of incident angle)
 profile_1593

To do

- Non-linearity correction shows improvement on the bias of the distribution, but cannot be fully corrected
 - Better approach for the problem?
 - Is it really just the issue with linearity for LG, is there something else?
- Calibrating modules near the central hole seems doable, want to use GEM projected position in order to get rid of the dependency on HyCal reconstructed position