The New Proton Charge Radius Experiment at JLab

Dipangkar Dutta Mississippi State University (for the PRad Collaboration)

Jefferson Lab Exploring the Nature of Matter

INPC 2016 Sept 12, 2016 Adelaide, Australia

Outline

The Proton Charge Radius Puzzle A New Experiment (PRad)

- windowless target
- high resolution calorimeter
- simultaneous detection of elastic and Moller
- 3. Preliminary Online Results
 4. Summary

Dature

The Proton Charge Radius Puzzle

~8σ discrepancy between muon and electron based measurements

Proton rms charge radius measured using electrons: 0.8770 ± 0.0045 (CODATA2010 + Zhan et al.) muons: 0.8409 ± 0.0004

Numerous possible resolutions explored

★ Are the state of the art QED calculations incomplete?

- E. Borie, Phys. Rev. A 71, 032508 (2005)
- U. D. Jentschura, Ann. of Phys. 326, 500 (2011)
- F. Hagelstein, V. Pascalutsa, Phys. Rev. A 91, 040502 (2015)

★ Are there additional corrections to the muonic Lamb shift due to proton structure (such as proton polarizability ∝ m⁴)?

- C. E. Carlson, V. Nazaryan and K. Griffioen, Phys. Rev. A 83, 042509 (2011)
- R. J. Hill and G. Paz, Phys. Rev. Lett. 107, 160402 (2011)

★ Are higher moments of the charge distribution accounted for in the extraction of rms charge radius?

- M. O. Distler, J. C. Bernauer and T. Walcher, Phys. Lett. B 696, 343 (2011)
- A. de Rujula, Phys. Lett. B 693, 555 (2010), and 697, 264 (2011)
- I. Cloet, and G. A. Miller, Phys. Rev. C. 83, 012201(R) (2011)

\star Is there an extrapolation problem in electron scattering data?

- D. W. Higinbotham et al., Phys. Rev. C 93, 055207 (2016)
- K. Griffioen, C. Carlson, S. Maddox, Phys. Rev. C 93, 065207 (2016)

Has new physics been discovered (violation of Lepton Universality)?

- V. Barger, et al., Phys. Rev. Lett. 106, 153001 (2011)
- B. Batell, D. McKeen, M. Pospelov, Phys. Rev. Lett. 107, 011803 (2011)
- D. Tucker-Smith, I. Yavin, Phys. Rev. D 83, 101702 (2011).

- Redo atomic hydrogen spectroscopy
- Muonic deuterium and helium (PSI)
- Muon-proton scattering (MUSE experiment)
- Electron scattering experiments (PRad) (preferably with completely different systematics)

PRad: a novel electron scattering experiment

Spokesperson: A. Gasparian, Co-spokespersons: D. Dutta, H. Gao, M. Khandaker

- High resolution, Hybrid calorimeter (magnetic spectrometer free)
- Windowless, high density H₂ gas flow target (reduced backgrounds)
- Simultaneous detection of elastic and Moller electrons (control of systematics)
- Vacuum box, one thin window, large area GEM chambers (improved resolution)
- Q² range of 10⁻⁴ 6x10⁻² GeV² (lower than all previous electron scattering expts.)

The PRad Collaboration

Jefferson Lab, NC A&T State University, **Duke University**, Idaho State University, **Mississippi State University**, Norfolk State University, **University of Virginia University of North Carolina at Wilmington, Old Dominion University**, **University of Kentucky**, **College of William & Mary, Argonne National Lab**, Hampton University **Tsinghua University, China ITEP, Moscow, Russia Budker Institute of Nuclear Physics, Russia** MIT

Graduate students Chao Peng (Duke) Li Ye (MSU) Weizhi Xiong (Duke) Xinzhan Bai (UVa) Abhisek Karki (MSU)

Post-docs Mehdi Meziane (Duke) Zhihong Ye (Duke) Krishna Adhikari (MSU) Maxime Lavillain (NC A&T) Rupesh Silwal (MIT)

PRad: First JLab 12 GeV era experiment

- High resolution, Hybrid calorimeter (access small scattering angle: 0.7° 7.0°)
- Windowless, high density H₂ gas flow target (reduced backgrounds)
- Simultaneous detection of elastic and Moller electrons (control of systematics)
- Vacuum box, one thin window, large area GEM chambers (improved resolution)

High resolution calorimeter

Reused PrimEx HyCal

- PbWO₄ and Pb-glass calorimeter (118x118 cm²)
- 34x34 matrix of 2.05 x 2.05 cm² x18 cm PbWO₄
- 576 Pb-glass detectors (3.82x3.82 cm² x45 cm)
- 5.5 m from the target,
- 0.5 sr acceptance

PbWO₄ resolution: $\sigma_E/E = 2.6\%/\sqrt{E}$ $\sigma_{xy} = 2.5 \text{ mm}/\sqrt{E}$

Pb-glass: 2.5 times worse

Large area GEM coordinate detectors

 Two large GEM based
 X and Y- coordinate detectors with 100 µm position resolution

- The GEM detectors provided:
 - Factor of >20 improvements in coordinate resolutions
 - similar improvements in Q² resolution
 - > unbiased coordinate reconstruction (including HyCal transition region)
 - increase Q² range by enabling use of Pb-glass part of calorimeter

 Designed and built at University of Virginia (UVa)

HyCal and GEMs on the beamline

beam view

downstream view

Windowless cryo-cooled gas flow target

D. Dutta

INPC 2016, Sept 12

Vacuum chamber with one thin window

two stage, 5 m long vacuum box

1.7 m dia, 2 mm thick Al window

D. Dutta

INPC 2016, Sept 12

High quality, stable CEBAF electron beam

electron beam profile at target (measured with harp scan)

position stability : ± 250 µm

Experiment ran during May/June 2016 With E_e = 1.1 GeV beam collected 4.2 mC on target (2x10¹⁸ H atoms/cm²) 604 M events with H and 53 M events without H in target 25 M events on 1µm Carbon foil target

With E_e = 2.2 GeV beam collected 14.3 mC on target (2x10¹⁸ H atoms/cm²) 756 M events with H and 38 M events without H in target 10.5 M events on 1µm Carbon foil target

D. Dutta

$ep \rightarrow ep$ event candidate

D. Dutta

ee → **ee** event candidate

HyCal calorimeter

GEM detectors

2.2 GeV data

D. Dutta

INPC 2016, Sept 12

Summary

The proton charge radius is a fundamental quantity in Physics

- Important for precision atomic spectroscopy
- Precision tests of future lattice QCD calculations
- "New Physics"
- The proton radius puzzle is still unresolved

A novel electron scattering experiment (PRad) was recently completed at JLab Hall-B.

- Iarge statistics, high quality, rich data have been collected;
- ✓ lowest Q² (~10⁻⁴ GeV/C²) in ep-scattering experiments was achieved;
- simultaneous measurement of the Møller and elastic scattering processes was demonstrated to control systematic uncertainties;
- data in a large Q² range (10⁻⁴ 6x10⁻² GeV²) have been recorded with the same experimental setting, for the first time in ep-scattering experiments.
- Analysis underway, first preliminary results expected soon.

This work was supported by NSF-MRI grant PHY-1229153 and US DOE grant DE-FG02-07ER41528