Beam pipe effect on ep yield background

Principle

Beam pipe material: stainless steel Radiation length: ~1.7cm

Beam pipe

- Beam pipe filled with residue hydrogen gas
- Every 10cm, gas density change one order of magnitude.
- Small angle scattering: no block
- Larger angle scattering: blocked

Beam pipe effect

Beam pipe effect

- Light blue: empty target run from 2.2 GeV data
- Blue: ep yield from target (z=0)
- Red: ep yield from a source (upstream, z = 2.2 meter, inside beam pipe)

Filled with residue hydrogen gas

- Beam pipe filled with residue hydrogen gas
- Every 10cm, gas density change one order of magnitude, for now.
- Besides residue gas, if place one more source inside beam line, will clearly see the bump at small scattering angle.
- By varying the distance R, bump position will be varying with it.

From previous week:

Discrepancy between simulation and data

Position of bump depend on the position of source relative to beam pipe

Vertex from ee events

- Beam energy fixed at 1100MeV, 2141MeV
- · Offsets corrected
- If omit electron mass, $\frac{E_1}{E_2} = \frac{\sqrt{1+(z/r_1)^2}}{\sqrt{1+(z/r_2)^2}} \approx \frac{r_2}{r_1}$
- Get energy for each electron
- Get scattering angle, → get z distance.

Vertex from ee events

Production run

Production run

All moller events

In a ring 1.0 degree – 1.2 degree

Vertex from ee events

Carbon run

Empty target run

Vertex from ee events (from simulation)

- ee has enough kinematic constraints, if some ee events are from upstream background, we will be able to tell (will see another peak at upstream).
- In fact upstream ee events will be stopped by beam pipe, while small angle ep events can pass through.
- So this distribution does not apply to ep yield background study.

In simulation, a 4cm meter long, uniform density, hydrogen gas source were placed 2.2 meter upstream.