Simulation and data comparision

- Chao Peng and Chao Gu have finalized the new ee generator, I am testing its behavior
- Plots show comparison between the data and simulation at 2 GeV
- ep / ee selected using hybrid Moller selection method

Graph

Graph

Simulation and data comparision

- Plots show comparison between the data and simulation at 2 GeV
- ep / ee using integrated Moller method
- Deviation at large angle still unsolved, plan to check out 1 GeV data where Moller may cover up to 5.2 deg

Graph

Graph

EP cross section from 0.7 to 3.5 deg, at 2 GeV

Simulation and data comparison at large angle

- The previous argument about the phi dependence of the ep yield is actually not fair, because we use difference cut for hit landing in PWO and LG
- GEM efficiency correction for the small angle ee should be reasonably good as shown by the comparison between integrated Moller and hybrid Moller method
- After GEM efficiency correction to the data, I scale the simulation and the data to have the same amount of ee in the small angle (one way to equalize the luminosity)
- And then compare the ep yield at difference region

Ep yield in 45×5 pwo blocks near the side of boundary of PWO

Agreement within 1\% between data and simulation
signal_E_sector_E_9

Ep yield in 45×5 pwo blocks near the corner of PWO

Data is 4% more than simulation

Shape still reasonably agree with each other

7

Ep yield in a LG sector

Data is 8% more than simulation

Shape doesn't not agree with each other, particularly the tail

Possible explanation and solution

- Electronic response of HyCal is not simulated good enough yet
- Clearly the tail doesn't match for the LG part
- GEM efficiency might have percentage level systematic shift at large angle
- Plan to check 1 GeV data where Moller may cover up to 5.2 deg
- Outer part might contain additional background in the data
- Cosmic? Unlikely but possible
- To do:
- Finish testing the new ee generator at 2 GeV and 1 GeV
- Compare the simulation and data at 1 GeV

