Cosmic Rejection based on Neural Network

Chao Peng

MEPG, Duke University

01/31/2017

Outline

- Cosmic Rejection in PRad
- Neural Network
 - Structure
 - Training
- Preliminary Result
- Future Plan

Cosmic Rejection in PRad

- For GEM efficiency study, we need a good cosmic rejection
 - Aim at < 0.2% uncertainty for the efficiency
 - Cosmic may be falsely identified as an event missed by GEM
 - Cosmic events ratio is about 2% ~ 5% at 1.1 GeV
 - Effective: > 90% cut on cosmic, so the efficiency is less affected.
 - Safe: rejection of ep/Moller < 0.05% without GEM matching

Cosmic Rejection in PRad

- Previously studied by Yuqi, very good progress made
 - Cut on log-likelihood of HyCal cluster profile
 - Cosmic rejection: 56% ~ 58%, ep/Moller rejection: 1% ~ 3%
 - Single dimension cut is not enough for such a task

Neural Network

- A general structure for machine learning, analogy of brain
- Excel at classification and multi-dimension cuts
- Basic Structure
 - Neurons are connected layer by layer
 - Feedforward signal, generated by the weighted sum of inputs from all connected neurons

$$y = f(\sum_{i=0}^K w_i x_i) = f(\mathbf{w^T}\mathbf{x})$$

https://commons.wikimedia.org/w/index.php?curid=1496812

Neural Network Training

- Supervised training and back propagation algorithm
 - Provide training data sets with expected output
 - Define the error function that to be minimized
 - Back propagate the errors to all neurons, update the weights via stochastic gradient descent

$$w_{ij,new} = w_{ij} - \eta \frac{\partial E}{\partial w_{ij}}$$

Preliminary Result

- Simple network, total 60 neurons, less than 800 connections between them
- 6 inputs per event to the network
 - hits number
 - maximum hit energy
 - Size and energy uniformity of the largest cluster
 - R-square/Chi-square of the linear fitting for the largest cluster
- Trained with two data sets
 - Cosmic data, taken during the experiment without beam
 - Good data, using production data with requirement of GEM matching

Preliminary Result

- Reject 88.96% of the events from cosmic data.
- Reject ~0.7% of the ep/Moller events

Future Plan

- Summary
 - Neural network is excel at classification, it shows a very promising result on cosmic rejection
 - We could continue refine the method to have a effective and safe rejection on cosmic, and thus better systematics in determining GEM efficiency
- To do
 - Add more information about the event (more inputs to the network)
 - Partitioned data for classification training (single cluster, double clusters, cosmic...), and particular training on the easy-to-be-cut good events to improve the safety
 - May utilize the method from computer vision to treat the whole HyCal as a pixel map and identify the cosmic rays
 - Maybe a good project for Yuqi to continue work on