Proton Charge Radius Experiment (PRad) in Hall B, JLab

Few Body 21

On behalf of the PRad collaboration

Chao Peng

Duke university

05/05/2015

Outline

- Physics motivation
- PRad experiment
 - Experimental apparatus
- Simulations for PRad
 - Target simulation
 - Background study
 - Radiative corrections
 - Radius extraction
- Precision Projection

Physics motivation

- Protons and neutrons are the primary building blocks of the atomic nucleus. Proton charge radius is a fundamental quantity important to QCD and QED
- How to experimentally determine the proton charge radius?
 - Electron-proton elastic scattering measurements
 - Hydrogen Lamb shift measurements (electronic or muonic)
- In scattering experiments, at very low Q², rms charge radius is given by

$$G_E^p(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

$$\frac{\langle r^2 \rangle}{6} = -\left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2=0}$$

Proton
Bag of quarks and gluons

Physics motivation

- The proton charge radius puzzle was raised by the Lamb shift measurement of muonic hydrogen at PSI^{1, 2}
- PSI value is the most precise (0.05%), but 7σ away from CODATA value³
 - CODATA value: a compilation of world data from e-p elastic scattering measurements and hydrogen Lamb shift measurements
- Discrepancy is not understood yet. New experiments with different systematics are needed

- 1. R. Pohl, A. Antognini, F. Nez, et al., Nature 466, 213 (2010).
- 2. A. Antognini, F. Nez, K. Schuhmann, et al., Science 339, 417 (2013).
- 3. P.J. Mohr, B.N. Taylor, and D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012).
- 4. I. Sick, Phys. Lett. B 576, 62 (2003).
- 5. J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010).
- 6. X. Zhan et al., arXiv 1102:0318v2 [nucl-ex] (2011).

PRad experiment

- Non-magnetic and calorimetric experiment
- Very low Q², never reached by electron scatt. experiments, $2 \times 10^{-4} 2 \times 10^{-2}$ (GeV/c)²
- Windowless gas-flow target
- e-p cross sections normalized to the well known Møller process

Spokesperson: D. Dutta, H. Gao, A. Gasparian (contact) and M. Khandaker

Experimental apparatus

- Windowless gas-flow target
 - Removed the typical background source from target windows

Expected target thickness
 ~10¹⁸ atoms/cm² at 25 K

 Minimized the material for low background from beam halo

Target chamber

Target cell

Experimental apparatus

- The vacuum box will be directly connected to the beam pipe
 - It removes the background from other materials on the beamline

Vacuum box vessel

Think window

Experimental apparatus

- High resolution hybrid calorimeter (HyCal)
 - Built by the PrimEx collaboration at Jlab
 - PbWO₄ crystal + lead glass
- Central part (crystal) resolution

$$-\sigma_E/E=2.6\%/\sqrt{E}$$
 , $\sigma_{x,y}/E=2.5~mm/\sqrt{E}$

- Gas electron multiplier (GEM)
 - At the upstream of HyCal
 - Improve the position resolution to 0.1 mm

Work by Y. Zhang (Duke)

Target simulation

- Target density was studied by COMSOL Multiphysics, and verified by target test
- Surface pressure of the chambers
 - -1st stage: 6×10^{-4} torr
 - 2^{nd} stage: 9×10^{-6} torr, satisfies beam line vacuum requirements
- Gas density and target thickness
 - Target thickness at center: 3.42×10^{18} H/cm²
 - Thickness in proposal: $> 1 \times 10^{18}$ H/cm²

Background study

- Full simulation based on Geant4
- The primary background source is the electron-nuclei scattering of beam halo from the target structure
- Minimize the background: Subtraction from the empty target run

HyCal in frame view

Geometries in the code

Beam profile for 6 GeV machine From A. P. Freyberger

Background study

- Empty target run for background subtraction
- Statistical uncertainties < 0.5% according to the simulation
- Systematic uncertainty ~ 0.4% with the assumption of 1% uncertainty on the measured beam charge, (Normalize to Møller process will further improve it)

Radiative corrections

- Event generators including radiation effects of e-p and e-e scattering were developed
- Go beyond the ultra-relativistic approximation (URA, $m_e^2 \ll Q^2$)

Radiative corrections

 We also use another event generator with RC for cross check

- It is developed by A. Gramolin
 - Lowest order QED radiative corrections
 - First order bremsstrahlung without soft-photon or ultrarelativistic approximations

Radius extraction

• Assumed 0.6% systematics for measured cross-sections in simulation (dipole fit, r_p = 0.8768 fm as the input)

Precision Projection

• The precision of the extracted radius is expected to be sub-percent

Thank you

• The project is supported by U.S. Department of Energy under contract number DE-FG02-03ER41231 and NSF MRI award PHY-1229153

PRad Collaboration

JLab experiment E12-11-106

Jefferson Lab

NC A&T State University

Duke University

Idaho State University

Mississippi State University

Norfolk State University

University of North Carolina at Wilmington

Old Dominion University

University of Kentucky

College of William & Mary

Argonne National Lab

Hampton University

University of New Hampshire

Tsinghua University