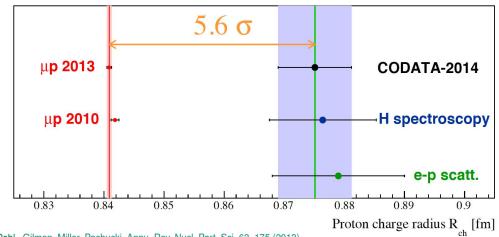


Calibration of the HyCal calorimeter for the PRad Experiment at JLab¹

Li Ye Mississippi State University for the PRad collaboration

¹.This work is supported in part by NSF MRI award PHY-1229153, the U.S. Department of Energy under Contacts No. DE-FG02-07ER41528, Thomas Jefferson National Laboratory, Mississippi State University and PRad collaboration


Outline

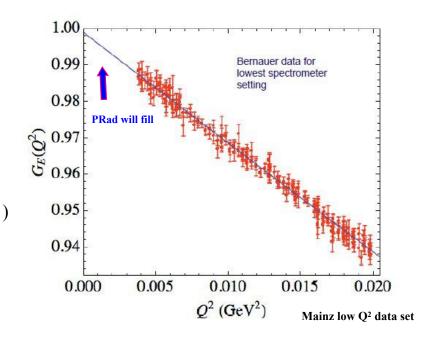
- PRad Physics goals
- Experimental setup
- Calibration Methods
- Trigger Efficiency
- Summary

The Proton Charge Radius Puzzle

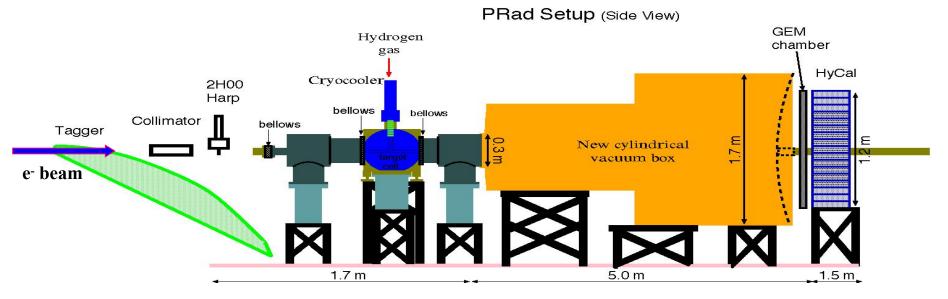
Existing data:

- 1. electron-proton elastic scattering measurements
- 2. Lamb shift measurements in atomic hydrogen
- 3. Lamb shift measurements in muonic hydrogen

- Pohl , Gilman, Miller, Pachucki, Annu. Rev. Nucl. Part. Sci. 63, 175 (2013).
- Muonic hydrogen Lamb shift experiment at PSI (2010,2013)
- $r_p = 0.84184(67)$ fm Unprecedented less than 0.1% precision
- ~ 5.6 σ discrepancy from most of previous experimental results and analyses


The PRad Experiment (E12-11-106)

Experimental goals:


- reach very low Q² range (~ 10 times less than the Mainz experiment)
- \triangleright reach sub-percent precision in r_p extraction

Novel Techniques Used:

- ① Non-magnetic-spectrometer method:
 - use high resolution high acceptance calorimeter and high position resolution GEM detector
 - reach smaller scattering angles: ($\Theta = 0.6^{\circ} 7.5^{\circ}$) ($Q^2 = 2x10^{-4} 6x10^{-2}$) GeV²/c² essentially, model independent r_p extraction
- ② Simultaneous detection of ee → ee Moller scattering (best known control of systematics)
- \odot Use high density windowless H_2 gas flow target:
 - beam background fully under control with high quality CEBAF beam
 - · minimize experimental background

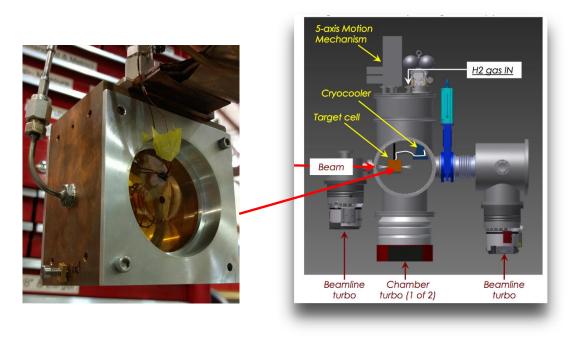
PRad Experimental Setup (schematics)

- High resolution, Hybrid calorimeter (magnetic spectrometer free)
- Windowless, high density H₂ gas flow target (reduced backgrounds)
- Simultaneous detection of elastic and Moller electrons (control of systematics)
- Vacuum box, one thin window, large area GEM chambers (improved resolution)

Windowless H₂ Gas Flow Target

- Target chamber is differentially pumped with four high speed turbos.
- Kapton orifices up- and downstream from the cell reduce the beam line vacuum.
- A four-axis motion mechanism positions the target cell, with approximately $\pm 10~\mu$ m accuracy.

Target specs:


Cell: 30 µm thick Kapton, length 4 cm

- ✓ diameter 8 cm with 2 mm diameter holes for the beam to pass through
- ✓ Cell pressure 0.5 Torr

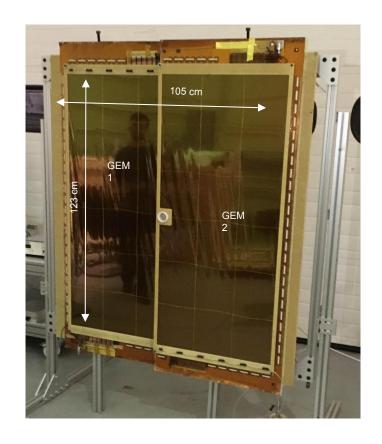
Target: H₂ input gas temp. 19.5 K

- \checkmark thickness 2×10¹⁸ (atoms) / cm²
- \checkmark density 2.75×10¹⁷ (molecules) / cm³
- ✓ Cell / chamber / vacuum tank pressure: 470 mTorr / 2.3 mTorr / 0.3 mTorr

Funded by a NSF MRI grant

Electromagnetic Calorimeter (PrimEx HyCal)

- Combination of PbWO₄ and Pb-glass detectors (118×118 cm²)
- 34×34 matrix of 2.05×2.05×18 cm³ PbWO₄ shower detectors
- 576 Pb-glass shower detectors (3.82×3.82×45.0 cm³)
- 2×2 PbWO₄ modules removed in middle for beam passage
- 5.8 m from H₂ target (~0.5 sr acceptance)



PRad GEMs: Design & Specifications

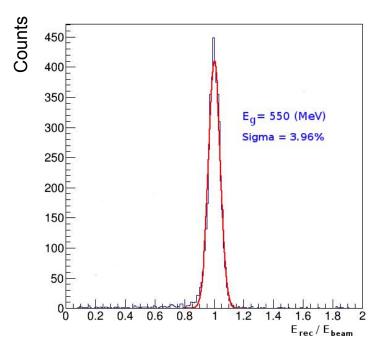
- Two modules mounted on the holding frame in PRad GEM configuration before the cosmic run in EEL (March 2016)
- Largest GEM detector ever built in the world
 - ✓ Each module(123 cm x 55 cm)
 - ✓ The two modules overlap in the central part for the alignment of the beam pipe hole
- COMPASS-like strip readout (1.3 m long strips in the vertical direction ⇒ capacitance noise still OK)

More details at Xinzhan Bai's talk in the same session

PRad in Hall B Jefferson Lab

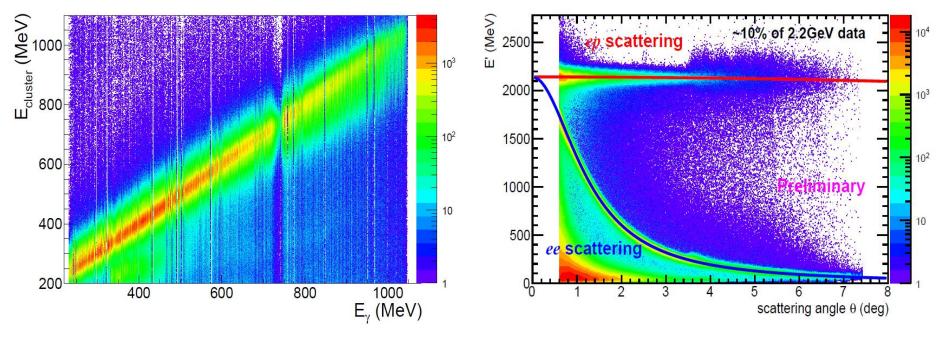
Beam-side view

GEMs mounted on HyCal


Calorimeter Calibration Method

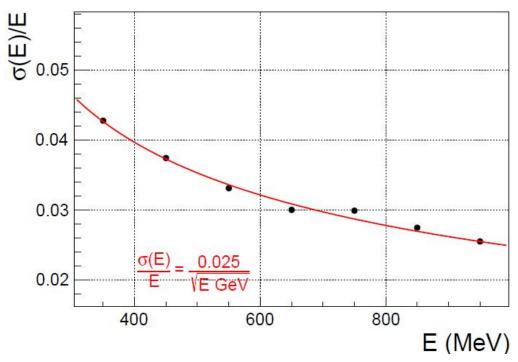
- ➤ Gains of every detector module controlled by Light Monitoring System (LMS)
- > Two different calibration modes:
 - ◆ Before physics data collection: Scan with 250~1050 MeV tagged photon beam incident on each module
 - → study of resolution, efficiency and non-linearity
 - During physics data collection:
 - With Moller and ep elastic events
- > Two different clustering algorithms used for cross check
- > Iterative method:

$$\mathbf{gain}_{module}(n+1) = \mathbf{gain}_{module}(n) / \langle \mathbf{E}_{measured} / \mathbf{E}_{expected} \rangle$$


Calorimeter Calibration Example

Example for PbWO4 module W222

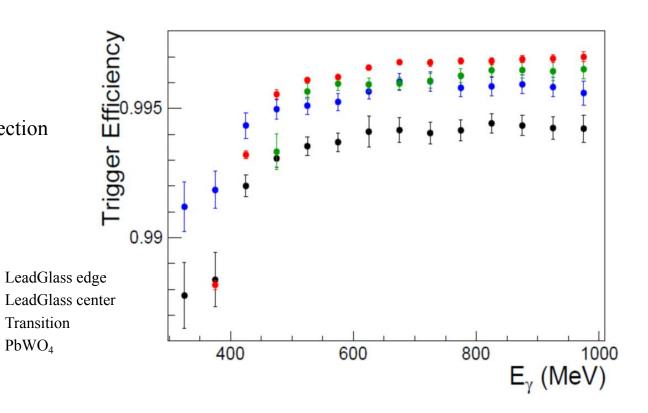
reconstructed energy / beam energy


Events Reconstruction

reconstructed calibration events

reconstructed physics events

Preliminary Energy Resolution



PbWO4 resolution at 1 GeV: 2.5%

Trigger Efficiency

Three triggers:

- ① LeadGlassSum
- 2 TotalSum
- ③ Tagger
- ➤ Above 450 MeV with detection efficiency 0.994
- Good uniformity

Summary

- ✓ The Proton Radius Puzzle is still unsolved
- ✓ The PRad experiment was uniquely designed to address the Puzzle
- ✓ The experiment succefully ran in May 2016
- ✓ HyCal calibration and alignment are finalized
 - → good energy resolution, high and uniform efficiency
- ✓ The physics analysis is in progress!