GEM Efficiency - Event Selection

Ep cuts:

- HyCal cluster size cut for discharge modules
hhEnergyAngle
- Elasticity cut
- HyCal Dead modules cut
- Overflow channels cut

Moller cuts:

- HyCal cluster size cut for discharge modules
- Kinematics cut for each electron
- Elasticity cut for energy sum of two electrons
- Coplanarity cut
- Moller Z cut
- HyCal Dead modules cut

GEM efficiency - Event Selection

Ep cuts:

- HyCal cluster size cut for discharge modules
hhEnergyAngleFiltered
- Elasticity cut
- HyCal Dead modules cut
- Overflow channels cut

Moller cuts:

- HyCal cluster size cut for discharge modules
- Kinematics cut for each electron
- Elasticity cut for energy sum of two electrons
- Coplanarity cut
- Moller Z cut
- HyCal Dead modules cut

EE2 kinematics cut

- HyCal cluster size cut for discharge modules : applied to both ep/ee2
- Kinematics cut and Elasticity cut are both energy cuts, they share the same cut threshold (number of sigma)
- Overflow channels cut only applied to ep

Kinematics cut for ee2:

$$
\begin{aligned}
& \left|E_{\text {measure }}-E_{\text {expected }}\right|<N_{\sigma} \times \sigma_{\text {energy }} \\
& E_{\text {expected }}=E_{\text {moller }}(\theta)
\end{aligned}
$$

ө: Scattering angle from HyCal
hhEnergyAngleFiltered

EE2 kinematics cut

- Check E_expected using GEM coordinates

$$
E_{\text {measure }}-E_{\text {expected }}
$$

Kinematics cut for ee2:
$\left|E_{\text {measure }}-E_{\text {expected }}\right|<N_{\sigma} \times \sigma_{\text {energy }}$
$E_{\text {expected }}=E_{\text {moller }}(\theta)$

ө: Scattering angle from HyCal

GEM Efficiency

- Red number - weizhi's efficiency number
- Purple number - xb efficiency number with 2 sigma HyCal cluster energy cut, combined 4 production runs
- Basically the two agrees, some angle has $\sim 0.2 \%$ difference probably due to different HyCal dead module cut, and other cuts for ee2
- This difference is reasonable also due to we are using different runs, usually different runs have slightly different efficiency

GEM Efficiency

- GEM efficiency in a specific integrated area
- ep/ee2 clusters in this area

GEM Efficiency

- GEM efficiency in a specific integrated area
- Scan the efficiency change against different HyCal cluster energy cut
- At ~ 4 Sigma, efficiency reached a flat region, keep shrinking number of sigma cut won't increase efficiency

GEM Efficiency

- GEM efficiency in a specific integrated area
- A plateau appears at very large number (~ 10) of energy sigma cut
- The other cuts already made ee2 very tight

GEM Efficiency

- GEM efficiency in a specific integrated area
- ee2/ep efficiency converge at around 3 sigma cut

GEM Efficiency

- GEM efficiency in a specific integrated area
- ee2/ep/ee1 converge at < ~2 energy sigma cut

