## Solid target simulation

- Simulation to determine the thickness of solid target
- Electron beam current ~ 10 nA (may be lowered by a factor of up to 10)
- Event rates limit is 1 ~ 2 kHz
- Trigger, total energy deposit on HyCal > 500 MeV (for 1.1 GeV beam)

# Solid target simulation

- Material in the simulation
  - Pure carbon
  - Density: 1.201 g/cm<sup>3</sup> (0.1 mole/cm<sup>3</sup>)
- Target in the simulation
  - Disk shape
  - Wire shape

#### Simulation results

- 0.1 mm thick disk, target thickness 6.022 × 10<sup>21</sup> atoms/cm<sup>2</sup>
- Incident electron 10<sup>8</sup>, equivalent to 1/625 second
- Triggered events: 12448, rate is 7.78 MHz



3

### Simulation results

- 0.1 mm diameter wire
- Incident electron 10<sup>8</sup>, equivalent to 1/625 second
- Triggered events: 7593, rate is 4.75 MHz



#### Simulation results

- 0.01 mm diameter wire
- Incident electron  $5 \times 10^8$ , equivalent to 1/125 second
- Triggered events: 2784, rate is 348 kHz





- If we are aiming at the 1 kHz event rates. The target thickness should be about 0.78 × 10<sup>18</sup> C atoms/cm<sup>2</sup>
- Lowering the beam current can reduce the event rates
- Wire shape target can have a lower rates