Effect of HyCal Module Wrapper

- For each HyCal module, there is a ~100um wrapper around it (same for PWO and LG)
- These wrappers may introduce some energy leakages, as they creates gaps between modules. This may slightly change the size of the elastic tail
- Larger elastic tail means less yield with a given cut, so it may change the ep/ee ratio
- In the previous study, it has not been put in in the simulation, so we should study its effect now

Effect of HyCal Module Wrapper – Energy Spectrum comparison

10⁵ 2GeV 10⁴ 10³ data 10² sim, with wrapper sim, without wrapper 500 1000 1500 2000 2500 E' (MeV)

spectrum 0.80 deg < θ < 0.90 deg

- At very forward angle, the elastic tail in the data is a bit larger that the simulation without wrapper
- With wrapper, the simulation matches better with the data

Effect of HyCal Module Wrapper – Energy Spectrum comparison spectrum 3.00 deg < θ < 3.25 deg

- At larger angle, the effect of wrapper seems smaller, as the incident particles "see" less caps between modules
- And also in the LG, since the thickness of wrapper is the same as PWO, the area ratio between wrapper and module is even smaller

Effect of HyCal Module Wrapper – Energy Spectrum comparison

4

5

7

ee yield with wrapper / ee yield without wrapper Graph

Effect of HyCal Module Wrapper – super ratio (ep/ee)_{sim}/(ep/ee)_{data} Graph

Effect of HyCal Module Wrapper – super ratio (ep/ee)_{sim}/(ep/ee)_{data} Graph

Effect of HyCal Module Wrapper – G_E

With wrapper Without wrapper GE_Q2_Graph_1 GE_Q2_Graph_1 G_E G_E ł 10⁻³ 10⁻² 10⁻³ 10⁻² Q^2 (GeV²) Q^2 (GeV²) 12

Systematic uncertainty table

items	Uncertainty on cross section (or possible solution)
Background subtraction	??
simulation	~0.5% to 1%
Cosmic contamination for GEM eff	~< 0.2 %
GEM efficiency correction error	~0.2% to 0.5%
Rad correction for ep	~0% (using difference between the two generators)
Rad correction for ee	?? (using difference between the two generators)
Inelastic contribution	(using difference between generators)
HyCal trigger efficiency	??
Detector position	<0.1%
Beam energy	?? (using the nominal uncertainty)

• If we know the true averaged GEM efficiency for ep and ee in a given theta ring, then true ep/ee ratio should be:

 $\frac{Yield_{ep}/\varepsilon_{ep}}{Yield_{ee}/\epsilon_{ee}}$

- When using the bin by bin method, we simply take Yield_{ep}/Yield_{ee}, or we implicitly assume that $\varepsilon_{ep} = \varepsilon_{ep}$, which is only approximately true
 - Matching between GEM and HyCal is energy dependent (multiple scattering and HyCal position resolution...)
 - Angular Event distribution is very different for ep and ee (ep piles-up more at small angle)
- When calculate the absolute value of the GEM matching efficiency, we use HyCal, which doesn't have enough resolution to resolve GEM spacers and gaps between HV sectors

- Same data set run through the two cases (with and without GEM spacer removal)
- Two sets of GEM matching efficiencies are calculated, and used to correct for the yields
- Take the ratio between the yields to see if the correction is perfect

- Same data set run through the two cases (with and without GEM spacer removal)
- Take the ep/ee ratio separately within each case
- Take the super ratio see if the GEM efficiency drops out

Error in simulation

Error in simulation

- Possible source of systematic error from simulation
 - MC calibration (mean and width of the elastic peak matching between data and simulation)
 - Energy leakage (caps between modules, transition region)
 - Effect of background (cluster overlap)
 - S-shape effect in simulation and data not identical

•

Checking the simulation

- use uniform distributed electrons in x and y and energy from 1000 to 2200 MeV and check the acceptance
- Condition of acceptance:
 - Reconstructed energy within 4 sigma (HyCal energy resolution) agreement with the vertex momentum
 - Reconstructed position within 6 sigma (HyCal position resolution) agreement with the projected hit position

energy_generated_count

energy_generated_count

