

1

Calibration of the HyCal calorimeter for the PRad Experiment at JLab¹

Li Ye Mississippi State University for the PRad collaboration

¹.This work is supported in part by NSF MRI award PHY-1229153, the U.S. Department of Energy under Contacts No. DE-FG02-07ER41528, Thomas Jefferson National Laboratory, Mississippi State University and PRad collaboration

Outline

- PRad Physics goals
- Experimental setup
- Calibration Methods
- Trigger Efficiency
- Summary

The Proton Charge Radius Puzzle

Existing data :

1.electron-proton elastic scattering measurements

2.Lamb shift measurements in atomic hydrogen

3.Lamb shift measurements in muonic hydrogen

- Muonic hydrogen Lamb shift experiment at PSI (2010,2013)
- r_p = 0.84184(67) fm Unprecedented less than 0.1% precision
- ~ 5.6 σ discrepancy from most of previous experimental results and analyses

The PRad Experiment (E12-11-106)

- Experimental goals:
 - reach very low Q² range (~ 10 times less than the Mainz experiment)
 - reach sub-percent precision in r_p extraction
- Novel Techniques Used:
 - Non-magnetic-spectrometer method: use high resolution high acceptance calorimeter and high position resolution GEM detector
 - reach smaller scattering angles: ($\Theta = 0.5^{\circ} 7.5^{\circ}$) (Q² = 2x10⁻⁴ - 6x10⁻²) GeV/c² essentially, model independent r_p extraction
 - 2) Simultaneous detection of $ee \rightarrow ee$ Moller scattering
 - (best known control of systematics)
 - 3) Use high density windowless H2 gas flow target:
 - beam background fully under control with high quality CEBAF beam
 - minimize experimental background
 - Two beam energies: E₀ = 1.1 GeV and 2.2 GeV to increase Q² range: (2x10⁻⁴ 6x10⁻²) GeV/c²
 - Will reach sub-percent precision in r_p extraction

PRad Experimental Setup (schematics)

- High resolution, Hybrid calorimeter (Magnetic Spectrometer Free)
- Windowless, high density H2 gas flow target (Reduced backgrounds)
- Simultaneous detection of elastic and Moller electrons (control of systematics)
- Vacuum box, one thin window, large area GEM chambers (improved resolution)
- Q² range of $2 \times 10^{-4} 6 \times 10^{-2}$ GeV² (lower than all previous electron scattering expts.)

Windowless H₂ Gas Flow Target

- Target chamber is differentially pumped with four high speed turbos.
- Kapton orifices up- and downstream from the cell reduce the beam line vacuum.
- A four-axis motion mechanism positions the target cell, with approximately $\pm 10 \ \mu m$ accuracy.

Target specs:

Cell: 30 µm thick Kapton, length 4 cm

- ✓ diameter 8 cm with 2 mm diameter holes for the beam to pass through
- ✓ Cell pressure 0.5 torr

Target: H₂ input gas temp. 19.5 K

- \checkmark thickness 2×10¹⁸ (atoms) / cm²
- ✓ density 2.75×10^{17} (molecules) / cm³
- ✓ Cell / chamber / vacuum tank pressure: 470 mtorr / 2.3 mtorr / 0.3 mtorr

Funded by a NSF MRI grant

Electromagnetic Calorimeter (PrimEx HyCal)

- Combination of PbWO₄ and Pb-glass detectors (118x118 cm²)
- 34 x 34 matrix of 2.05 x 2.05 x 18 cm³ PbWO₄ shower detectors
- 576 Pb-glass shower detectors (3.82x3.82x45.0 cm³)
- 2 x 2 PbWO₄ modules removed in middle for beam passage
- 5.5 m from H₂ target (~0.5 sr acceptance)
- Moved back to Hall B in June, 2014:
 Cabling system with infrastructure reassembled
 - > Trigger, analog and HV electronics are reinstalled
 - Cooling system is operational
 - LMS checked and repaired
 - > All individual detectors checked and repaired
 - > DAQ is operational (HyCal readout part)
 - > Transporter is reinstalled/repaired and operational

PRad GEMs: Design & Specifications

Desired Sensitive area: 116.4 x 116.4 cm² central hole: diameter 4.4 cm, including the frame max allowed maximum allowable non-sensitive region 7.8 x 7.8 cm²

Two modules mounted on the holding frame in PRad GEM configuration before the cosmic run in EEL (March 2016)

- Largest GEM detector ever built in the world
 - Each module(123 cm x 55 cm)
 - The two modules overlap in the central part for the alignment of the beam pipe hole
- COMPASS-like strip readout (1.3 m long strips in the vertical direction ⇒ capacitance noise still OK)

APS April meeting, Washington DC, 2017

PRad in Jefferson Lab Hall B

Beam-side view

GEMs mounted on HyCal

Calorimeter Calibration Method

- ➢ Gains controlled by Light Monitoring System (LMS)
- ➤ Two different calibration modes:
 - Before physics data collection: Scan with 250~1050 MeV tagged photon beam incident on each module
 → study of resolution, efficiency and non-linearity
 - During physics data collection:
 - With Moller and ep elastic events
- ➤ Iterative method:

 $gain_{module}(n+1) = gain_{module}(n) / \langle E_{measured} / E_{expected} \rangle$

> Two different clustering algorithms used for cross check

Calorimeter Calibration Example

Example for PbWO4 module W222

Reconstruction After Calibration

Calibration with tagged photon beam

Physics Calibration

Preliminary Energy Resolution

Trigger Efficiency

- Three triggers: 1.LeadGlassSum, 2.TotalSum, 3.Tagger
- Plateau above 450 MeV with 0.994 efficiency
- ➢ Good uniformity

Summary

- \checkmark The Proton Radius Puzzle is still unsolved
- \checkmark The PRad experiment was uniquely designed to address the Proton Radius Puzzle
- ✓ HyCal calibration and alignment are finalized
 - \rightarrow good energy resolution , high and uniform efficiency
- ✓ The physics analysis will start soon!