# Preparation of the PRad-II Experiment

A. Gasparian NC A&T State University, NC USA

for the PRad collaboration

Items to be discussed

- PRad Basic concepts
- Improvements for PRad-II:
  - ✓ more statistics;
  - new beam halo blocker;
  - new scintillator veto counters;
  - ✓ second GEM plane for tracking;
  - ✓ upgraded HyCal;
  - improved radiative corrections

## **PRad Basic Concepts**

- 1) Measure the ep-elastic cross section in relatively large Q<sup>2</sup> range with one experimental setting  $(Q^2 = 2x10^{-4} \div 6x10^{-2} \text{ GeV/c}^2)$
- 2) Access to smaller Q<sup>2</sup> range,  $Q^2 = 2x10^{-4} \text{ GeV/c}^2$
- 3) Normalize the diff. cross sections to a well-known QED processes: simultaneous detection of  $ee \rightarrow ee$ Moller scattering.



## **PRad-II Concepts**

- 1) Based on PRad, design a new experiment to measure the Proton Radius (and the form factor) with the best possible precision and accuracy in ep-scattering experiments.
- 2) Access to one more order of magnitude less  $Q^2$  range ( $Q^2 = 2x10^{-5}$  GeV/c<sup>2</sup>)



## **PRad-II Expected Accuracy**

- Approved by Jlab's PAC-48 in August, 2020 (with C1 condition)
- Expected total uncertainty: 0.43% (a factor of 4 improvement over PRad)



## Improvements in Uncertainties

| Sources                               | PRad $\delta r_p$ [fm] | PRad-II $\delta r_p$ [fm] | PRad-II $\delta r_p$ [fm] |
|---------------------------------------|------------------------|---------------------------|---------------------------|
|                                       |                        |                           | w/o HyCal upgrade         |
|                                       |                        |                           | and with 2 new GEM planes |
| Stat. uncertainty                     | 0.0075                 | 0.0017                    | 0.0017                    |
| HyCal non-uniform response            | 0.0029                 | 0.0001                    | 0.0013                    |
| Inelastic ep                          | 0.0009                 | 0.0001                    | 0.0009                    |
| Event selection                       | 0.0070                 | 0.0027                    | 0.0034                    |
| GEM efficiency                        | 0.0042                 | 0.0008                    | 0.0027                    |
| Acceptance & beam energy              | 0.0034                 | 0.0003                    | 0.0003                    |
| related                               |                        |                           |                           |
| Beam background                       | 0.0039                 | 0.0016                    | 0.0016                    |
| Radiative correction                  | 0.0069                 | 0.0004                    | 0.0004                    |
| $\mathbf{G}_{M}^{p}$ parameterization | 0.0006                 | 0.0005                    | 0.0005                    |
| Total systematic                      | 0.0115                 | 0.0032                    | 0.0049                    |
| Total uncertainty                     | 0.0137                 | 0.0036                    | 0.0052                    |

## **Statistics**

- Planning to take ~ 16 times more statistics, 4 times better statistical uncertainty.
- How?
  - PRad-II is approved for 40 PAC days (with C1 condition)
  - run with higher beam current
  - implement new fADC based DAQ
    - need 240 fADC250 housed in 15 VXS crates, each with CPU, TP, Interface board and signal distribution card



| Equipment                | Cost per unit (\$) | Number of units | Total cost (\$) |
|--------------------------|--------------------|-----------------|-----------------|
| FADC250                  | 6,000              | 240             | $1,\!440,\!000$ |
| VXS Crate                | 16,000             | 15              | 240,000         |
| CPU                      | 5,500              | 15              | 82,500          |
| Trigger processor        | 9,000              | 15              | $135,\!000$     |
| Trigger interface        | 1,500              | 15              | 22,500          |
| Signal distribution card | 2,000              | 15              | 30,000          |
| Total                    |                    | 15              | $1,\!950,\!000$ |

## New Beam halo Blocker

2<sup>nd</sup> beam halo blocker

can be a copy of the existing "photon beam collimator" with 3 positions:

- ✓ "open"
- ✓ ½" hole
- ✓ ¼" hole





### Moller Veto scintillator Counters

- To reach the  $Q^2 = 2x10^{-5}$  GeV/c<sup>2</sup> range, we need to veto the Moller events at very small angles (~0.5<sup>0</sup>) and take E<sub>e</sub> = 0.7 GeV electron beam
- 4 small scintillator detectors (~ 4x15 cm size) will be placed inside the main target chamber and will be retractable.
- Conceptual design work is completed with the Target group





#### 4 veto scintillators



## Second GEM Plane for Tracking

- The 2<sup>nd</sup> GEM plane will add tracking capabilities in the experiment, providing:
  - reducing the beam-line background by improving the z-vertex reconstruction (critical);
  - critical improvements in GEM detection efficiencies (very important).
- The 2<sup>nd</sup> plane will be based on the same GEM, included new, tested technologies.
- New He-bag for background reduction.







# HyCal Upgrade

- HyCal upgrade (change all Pb-glass to PbWO4 based detectors) will provide:
  - ~3 times better position and energy resolutions at higher Q<sup>2</sup> range. Critical for the ep-inelastic background subtraction.
  - make uniform detector response for entire Q<sup>2</sup> range. Critical for the proton radius extraction with this method.
  - Improvements in GEM detection efficiency measurements. Critical item for this method.
  - improvements in event selection process. Very important.
  - ✓ will help in experimental test of radiative corrections.
- PRad form factor difference from other best ep-experiments is  $\sim 1.5 2\%$  at larger Q<sup>2</sup> range.
- the ep-inelastic contributions in PRad at this Q<sup>2</sup> range (Pb-glass part) is also ~ 2%



# HyCal Upgrade

- HyCal upgrade will include :
  - ~ 1500 new PbWO4 detector modules to replace the ~ 600 Pb-glass detectors;
  - HyCal Frame will stay with the same cooling system;
  - HyCal transporter with the cable holding structure will stay;
  - HyCal stand table will stay;
- NSF RI-1 pre-proposal is submitted in January, 2021 (includes ~\$4.M for the HyCal upgrade, total: \$7.1M)





## Uncertainties with and without HyCal Upgrade

| Selected Items             | PRad $\delta r_p$ [fm] | PRad-II $\delta r_p$ [fm] | PRad-II $\delta r_p$ [fm] |
|----------------------------|------------------------|---------------------------|---------------------------|
|                            |                        |                           | w/o HyCal upgrade         |
|                            |                        |                           | and with 2 new GEM planes |
| Inelastic $ep$             | 0.0009                 | 0.0001                    | 0.0009                    |
| HyCal non-uniform response | 0.0029                 | 0.0001                    | 0.0013                    |
| Event selection            | 0.0070                 | 0.0027                    | 0.0034                    |
| Total uncertainty          | 0.0137                 | 0.0036                    | 0.0052                    |

### Studies of Radiative corrections (RCs) for PRad-II

- RCs one of the largest syst. uncertainty sources of r<sub>p</sub> in PRad
  - Total syst. uncertainty due to the higher order RCs --  $\delta r_{p}$  = 0.0069 fm
  - Syst. uncertainties correlated and Q<sup>2</sup> dependent for e-p and MØller scatterings
- > Aiming at a significantly better precision by PRad-II compared with PRad
  - Employ two planes of coordinate detectors in PRad-II to better determine efficiency
  - Use the integrated MØller method for all angular bins
  - Suppress the Q<sup>2</sup> dependent syst. uncertainties
  - Turn all the MØller syst. uncertainties into cross section normalization uncertainties
- Better testing for various calculations of radiative effects with PRad-II
  - Precise photon/electron PID with upgraded coordinate detectors and HyCal
  - Simultaneous detection of the scattered electrons and radiative photons from the "hard" radiative process
- > Aiming at total systematic uncertainty of 0.0032 fm with PRad-II
  - Plans in place for improved RC calculations at the NNLO level by our theory colleagues
  - Focus on the elastic e-p and MØller scatterings beyond ultrarelativistic limit
  - All RC calculations based on new methods to be finished up by the end of 2024



- Outline of the current project presented in the Whitepaper on Radiative Corrections: A. Afanasev, et al. arXiv:2012.09970 [nucl-th]
  - Planned with other current RC-related studies for the JLab SoLID SIDIS and proposed DRad experiment
  - Collaborations with different groups at PSI and Mainz on RC topics underway
- Carry out further studies of the r<sub>p</sub> robust extraction in PRad-II
  - Including also a blind analysis to reduce possible bias stemming from the normalization and the Q<sup>2</sup>-dependence of the form factor

- > Experimental validation of the radiative correction recipes
  - Symmetric single-arm Møller events from PRad 2.2 GeV data
  - Select "hard" radiative photon with  $E_{\gamma} > 35$  MeV (limited by HyCal resolution)



> PRad-II will significantly reduce the uncertainties

- Improved PID with two GEMs
- Better resolution on low energy photons with all crystal HyCal
- Higher statistics to check radiative photon distributions vs. their opening angles and energies

## Thank you!

## **PRad Result and Uncertainties**



PRad final result:  $R_p = 0.831 \pm 0.007 \text{ (stat.)} \pm 0.012 \text{ (syst.) fm}$ 

## HyCal Upgrade



#### Improvements in Form Factor



## NSF RI-1 Summary Budget

#### Table 2: Subsystems and responsible institutions for the upgraded PRad-II detector system

| Subsystem                      | Institution                  | Cost (\$ Million) |
|--------------------------------|------------------------------|-------------------|
| $PbWO_4$ detector modules      | North Carolina A&T           | 4.1               |
| HV supply, cables and assembly | State University             |                   |
| fADC based readout electronics | Duke University              | 1.95              |
|                                | Mississippi State University |                   |
| Gain monitoring system         | Mississippi State University | 0.1               |
| Front end patch panel          |                              |                   |
| Two planes of GEM detectors    | University of Virginia       | 0.95              |
| and readout electronics        |                              |                   |
| Total cost                     |                              | 7.1               |