APV25-SRS Electronics with 10 Gb Ethernet (Optical link) for PRad

Kondo Gnanvo University of Virginia

Development needed for PRad SRS Electronics PRadius

- Integration of the SRS with CODA is ongoing by Krishna & Chao, In the current system, UDP data are sent to the DAQ PC via 1 Gb Copper link, this is the bottleneck for pRad @ 5kHz.
- We can upgrade the data transfer to 10 Gb optical fiber link. Mostly firmware part need some development ⇒ SRS Hardware capability is already there and I assume the VME base CPU is also able to handle 10 Gb link
- A version of the firmware with 10 Gb link is available (developed and tested at CERN but this version is not compatible with the current firmware readout the APV25 electronics

Performances of APV25-SRS with 1 Gb Link @ UVa with Firmware compatible with APV25 electronics

Measured maximum trigger rate

	32 APVs	64 APVs
3 TS	2.3 kHz	1.2 kHz
6 TS	1.15 kHz	PRad 1 kHz at 125 MB
12 TS	0.6 kHz	

- High rate means less APV25 cards and/or less time samples (TS)
- 2.3 kHz trigger rate with 3 time samples with 32 APV25 cards
- Very similar to the pRad requirements for the readout electronic

2.3 kHz @ 32 APV25 (4096 chs) and 75 MB/s

Performances of SRS with 10 Gb optical Link

PRoton Radius

(Filippo Costa, ALICE DAQ - CERN)

UDP Ethernet 10Gb

The evaluation for UDP Ethernet data transmission protocol has already started. Preliminary tests have been performed together with RD51 collaboration (Hans MULLER, Alfonso TARAZONA MARTINEZ).

A test system has been prepared:

Continuous readout, no external trigger system, no timeout between 2 packets.

Courtesy Filippo Costa, ALICE DAQ group @ CERN

Test with software generated test data

10 Gb firmware does not have the APV25 implementation

100 kHz @10 kB ⇒ 10 kHz for 100 kB

 I00 – 200 kB event size @ 5 kHz trigger rate expected for PRad GEMs
 Both 10Gb firmware & APV25-1Gb firmware available

Need some work to merge the two into a 10Gb APV25-compatible firmware

UDP Ethernet

Implementation of the 10 Gb link for PRad

- I Met with Ben Raydo on Wednesday Nov 18 to discuss the possibility to implement the 10 Gb firmware for PRad APV25-SRS electronics
- I sent the firmware to Ben after the meeting and from preliminary evaluation, it seems like the amount of work that he needs in not crazy
 - We are projecting some preliminary tests with the hardware in the first week of December.
 - I would then bring part of UVa-SRS to Jlab, need the SRU (so far not part of Krishna setup)
- The effort by Krishna / Chao ... to improve the acquisition rate will be carried out independently and in parallel with the 10 Gb implementation but will converge at the end.
 - We would also need to test the readout list code with multiple FECs + SRU
- Ben also raised a few issues/point that we would need to look at:
 - How we deal with UDP packet loss at high rate?
 - Do we have some handshake mechanism in place for that?
 - How to deal with large data being copied to the disk/tape ... ?
- Recommend that these issues are brought to Sergey...

Checking and dealing with UDP packet drop

- Fortunately, there was a group in the RD51 collaboration that develop some software/firmware for the SRS electronics to deal precisely with the possibility of UDB dropping packet at high rate
- I am going to get in touch with this group and try to see if we can benefit from what they have develop and how it would fit with our need
 - Might be that additional firmware development might be required in that case we would still be requesting the help from Ben
 - Definitely part of software development and might be at readout list level in the VME-CPU

Zero suppression: Firmware or software

We also discussed whether the implementation of the zero suppression in order to reduce the GEM event data size and increase the DAQ rate

- Zero suppression in the firmware (FEC FPGA) is currently under test/development within RD51
 BUT:
 - It is a pre-beta version that would not have been thoroughly tested for when PRad need it
 - It does not deal with the common mode correction which is critical with APV25 electronics
 - Was developed for the latest FEC version FECv6 which has FPGA Virtex 6 more ressources and memory that the FEC v3 that we had at UVa for Prad.
 - I am going to get in touch with this group and try to see if we can benefit from what they have develop and how it would fit with our need
- However a software version of the zero suppression could be implemented at the VME-CPU level
 - I guess the readout list or CODA utilities could take care of that
 - then we could still achieve the huge data reduction
 - But we would need to evaluate the required performance of the CPU module ...

