Calibration of HyCal and GEM Z position

- Solving the following system of equations, for each double arm Moller, we have an analytic solution for Z:
 - $E_{beam} + m = E_1 + E_2$, where m is electron mass, E1, E2 are energy of scattered electrons
 - $P_1 \sin(\theta_1) = P_2 \sin(\theta_2)$ where P_1 and P_2 are scattered electron momenta, and theta are their polar angle in lab
 - $P_1 \cos(\theta_2) + P_2 \cos(\theta_2) = P_{beam}$
 - $\sin(\theta_1) = \frac{R_1}{\sqrt{R_1^2 + z^2}}$ and $\cos(\theta_1) = \frac{z}{\sqrt{R_1^2 + z^2}}$
 - It can be solved without neglecting electron mass:

 $z = \sqrt{(m + E_{beam})R_1R_2/(2m)}$

Condition

- Selection rules for double-arm Moller
 - Each Moller electron agree with the expected energy up to 3 sigma of HyCal energy resolution
 - | Sum of the two electron beam energy | < 10% of beam energy
 - Polar angle > 0.8 deg
 - Delta phi angle < 5 deg
- All hits projected to HyCal (z = 5640 AWAY from the target)

Distance between Projection Plane and Vertex Z

z_hist