ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321654296

Electron-proton scattering puzzle

Presentation · December 2017

CITATIONS O		READS 4
1 author:		
	M. Horbatsch York University 183 PUBLICATIONS 1,455 CITATIONS	
	SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

All content following this page was uploaded by M. Horbatsch on 07 December 2017.

E-P SCATTERING PUZZLE

Marko Horbatsch – York University, Toronto, Canada Jefferson Lab talk, December 8, 2017 Funding: NSERC. Credits: Eric A. Hessels, Douglas Higinbotham, Jose Alarcón

What is the proton radius puzzle?

- 2010: CODATA uses regular hydrogen spectroscopy data (mostly)
- \circ Also: elastic e-p scattering data, to declare R_p=0.8755(51) fm
- Even though: muonic hydrogen Lamb shift (CREMA): R_p=0.84169(66) fm
- Triggers: re-analysis of e-p scattering, re-analysis of hydrogen spectroscopy, much debate over 'new' physics (the muon not just a cousin to the electron?)
- Demand for new regular hydrogen spectroscopy!
- 2014 CODATA: doesn't trust the muonic hydrogen result YET!
- Rydberg constant (SI-au conversion!) is severely affected.

Outline

- 1. Spectroscopy overview: Garching vs Paris
- 2. elastic e-p scattering problem: what is the problem?
- 3. using moments from theory? C.Peset and A.Pineda; J.Alarcón and C.Weiss
- \circ 4. need the z-expansion, or the ζ -expansion (shifted z-expansion at fixed Q^2_{max})
- 5. Are 8 parameters sufficient to fit the MAMI data up to 1 GeV² ? (instead of 24)
- Will the scattering puzzle come to rest soon? Will the spectroscopy puzzle?

Spectroscopy results (Science 358, 79)

MPQ Garching: Fluorescence following Laser excitation Big quantum interference systematic!

Elastic e-p scattering (post-2010)

- Elastic e-p scattering with relativistic electrons
- De Broglie wavelength chosen to not look inside the proton
- Mainz (MAMI); Jan Bernauer et al.: 1422 data at momentum transfer squared Q² < 1 GeV²/c² using 6 beam energies
- Probing electric and magnetic charge distributions at the same time, except when Q² small
- Scattering problem: can it be inverted?
- Dispersion relations = analytic property of the form factors!
- \circ Photoproduction (γ -p scattering) of pions has a threshold at twice the pion mass squared!
- \circ Are fits in Q² justified when the range exceeds threshold (0.078 GeV²/c²)???
- Conformal mapping to the rescue!

MAMI (J. Bernauer et al)

- Used many fits to arrive at [Phys Rev C90, 015206 (2014)]
- $\circ R_{p}=0.879(5)_{stat} (4)_{sys} (2)_{model} (4)_{group} fm$
- Magnetic radius: ~0.80 fm (depends on TPE model)
- \circ Problem: reduced χ^2 of 1.14 ! (problem with error bars)
- Disputed by a number of different analyses:
- $\,\circ\,$ Horbatsch&Hessels: different models can give 0.84 and 0.89 fm
- Low-Q² data fits: favor small radius (Higinbotham et al, Griffioen et al)
- I. Sick and D. Trautmann fight back (PRC 95, 012501) defending large R_p , and defending the need to go to high Q².

Low-Q² fit: using moments from χ PT

- H&H&Pineda: PRC 95, 045203 (2017)
- $\circ\,$ Peset&Pineda: effective field theory: QCD reduced to heavy baryons (p, Δ) and π
- Cannot predict < R_p^2 >, but < R_{mag}^2 > and < R_p^4 >, etc., really the form factors minus R_p
- $\circ\,$ Fit low-Q^2 MAMI data to: ~ and please note the VIRTUAL PHOTON POLARIZATION $\epsilon\,$!!!

$$\sigma_{\rm red} = (1+\tau) \frac{d\sigma}{d\Omega} \Big/ \frac{d\sigma_{\rm Mott}}{d\Omega} = G_{\rm E}^2 + \frac{\tau G_{\rm M}^2}{\epsilon}, \qquad G_{\rm E}(Q^2) = 1 - \frac{R_{\rm p}^2}{3!}Q^2 + \frac{\langle r^4 \rangle_{\rm E}}{5!}Q^4 - \frac{\langle r^6 \rangle_{\rm E}}{7!}Q^6 + \cdots$$

$$\frac{G_{\rm M}(Q^2)}{\mu_{\rm p}} = 1 - \frac{\langle r^2 \rangle_{\rm M}}{3!}Q^2 + \frac{\langle r^4 \rangle_{\rm M}}{5!}Q^4 - \frac{\langle r^6 \rangle_{\rm M}}{7!}Q^6 + \cdots$$

$$\tau = Q^2/(4m_p^2) \qquad \epsilon = \left[1 + \frac{4Q^2 + \frac{Q^4}{m_p^2}}{8E^2 - 2\frac{Q^2}{m_p}(2E + m_p)}\right]^{-1}$$
Note:
At the lowest Q² G_{\rm E} only, but...
$$R_p = \sqrt{-3\frac{d\sigma_{\rm red}}{dQ^2}\Big|_{Q^2=0}} + \frac{3\mu_p^2}{4m_p^2}$$

One-parameter R_p fits? - 'kind of'; show ' G_E^2 '

 χ PT moments come with substantial uncertainties. Fits work up to some Q²_{max} with χ^{2}_{red} <1.14

Data come in groups (here five) with floating normalization constants (less than 1 % different from 1).

Extracted charge proton radius R_p has statistical and systematic uncertainties

Beam energies: 180 MeV: blue, red, green 315 MeV: magenta 450 MeV: gray (Rosenbluth method?) (270/1422 MAMI data)

For R_p we need the slope at Q²=0!

Big question: are the predicted χ PT moments (incl. uncertainties) reasonable?

What do we get when using less vs more data?

Blue band: statisticalPink: syst.: $< r^2 >_M$ Green syst.Higher

Note: We are far from the branch cut (0.078 GeV²)

 χ PT bound in fm²:

 $0.28 < \langle r^2 \rangle_M < 0.60$

Current R_M = 0.8 fm (χPT marginal ?)

Main reason why we stop at 0.023 GeV², but <r⁴>_E is also 'small'.

New MAMI on the horizon (PRad competition?)

• Initial-state radiation, Phys Lett B771,194 (2017), arXiv1612.06707

G_E and G_M from effective theory (Peset and Pineda)

R.J. Hill and G. Paz re-introduce this (forgotten?) method!

Moment expansion in Q² fails beyond 0.078 due to branch cut (charged pions) at Q²=-0.078=- t_c

 γ -p scattering, dispersion relations

Note: we had to put in $R_p^2 = \langle r^2 \rangle_E$ (here $R_p = 0.85$ fm)!

But:

We can fix that using conformal mapping

Moment expansion equals semi-analytic answer to high accuracy out to reasonable Q²=-t !

Testing fits up to moderate Q²_{max}

- Situation: Effective theory predictions: nothing useful on charge radius, rather small quartic moment, smallish magnetic radius.
- Thus: attempt fits where $R_p = R_e$ and R_m float, as well as $\langle r^4 \rangle_e$ with sampling of $\langle r^6 \rangle_e$ and $\langle r^4 \rangle_m$ in an extended range compared to predictions. Show reduced chi-squared for three-parameter fits with chosen $\langle r^6 \rangle_e$ and $\langle r^4 \rangle_m$ and observe correlations.
- If we went for the minimum chi-squared in these, then we'd do a total 5-parameter fit
- Higher moments up to order 20 are used as the central-value predictions. Without that, no reasonable function out to $Q^2_{max} = 0.2 \text{ GeV}^2$.
- $\,\circ\,$ Note: we are forced to expand beyond the predictions for $<\!\!r^6\!\!>_e$ and $<\!\!r^4\!\!>_m$, but not by too much.
- We use heavy-baryon effective theory including as degrees: π , p, and the Δ . (by C. Peset and A. Pineda)

$(Q_{max}^2 = 0.2 \text{ GeV}^2) \chi_{red}^2$: green<1.08, blue<1.10, red<1.14

Is lowest reduced chi-squared χ_{red}^2 the answer?

If not, why not?

Are there systematic problems with the MAMI data?

Clearly: P&P prediction 0.6(3) = No Go

 I. Sick & D. Trautmann:
 2.01(5) PRC 2017

 M. Distler:
 2.6 fm⁴

Note the R_e vs $< r^4 >_e$ correlation !!

Is it consistent for the higher moments ?

J.A & C.W arXiv 1710.06430

Strategy: use 'xPT+' (J.Alarcón & C.Weiss) with a trick:

• Turn moment expansions into fit functions:

here is how:

Given a max. Q^2 (here 0.2, dashed line): Spread the data in the conformal range Power series about $\zeta=0$. $\zeta =$ generalized z.

Use predicted moments (up to 10^{th} order in ζ)

Replace the lowest-order moments by fit parameters (here a 4-parameter fit)

Fit works for some range above max. Q².

Reduced chi-squared of 1.08 here

Good sensitivity to magnetic effects. Why?

To go to higher max. Q² we need more predictions replaced by fit parameters

Fits with 2, 3, 4, 5, 6, 7 parameters (& up to 31 norms)

Electric Radius:

Magnetic Radius:

Errors shown are statistical (fit) errors; systematic errors due to predicted moment uncertainties can be inferred from the jump in value when a relevant parameter is added (electric vs magnetic)

Fits tend towards small (µH) radius value when the dust settles! (blue? - no gain in fit quality)

Magnetic radius of ~0.82(1) fm is higher than the MAMI analysis of 0.80(2) fm (2014 with TPE)

Electric moments (arXiv 1710.06430), magnetic (private c., with uncertainties assumed >= to electric by MH)

Consistency between predicted ranges and fit findings?

The highest 'determined' moments

What have we done ?

Used theory to yield constraints on the large-Q² behavior of the form factors.

1.0

Used the only parameters relevant in the given Q^2 range.

Used a physics constraint (π - π threshold in analytic continuation of the FFs).

So, is there any **bad news** ?

Reduced chi-squared is – perhaps - the bad news!

The MAMI fitters are told to stay below 1.14 - line.

This 1.14 is an admission of problems, For 1422 data points it shouldn't happen.

Now, what if the MAMI troubles are systematic?

Our analysis: a value of 1.23 for $Q^2_{max} < 0.74$ is OK. The blue curve is worse (last 6 points, i.e., reject). Is $\chi^2 a 1/\epsilon$ problem??

The MAMI fitters (including ourselves in the past) have managed to achieve 1.14 over the entire data set by using 12 parameters per form factor = 24 parameters. Are these fits just fighting some systematic errors when ε goes small? (at the dashed lines)

7% error vs 14% (Jan's vs our guess)

The future will tell. The weaving is in the MAMI data (from Rosenbluth separations!), G_e and G_m swing a couple of times - is this physics ? If so, what physics ?

Expected Precision of PRad Data

At this point, the community is split. 0.84 fm 0.88 fm

New electron scattering (PRAD), muon-electron scattering (MUSE), and atomic experiments coming!

At this point, the community is split. 0.84 fm 0.88 fm

New electron scattering (PRAD), muon-electron scattering (MUSE), and atomic experiments coming!