Progress Update

- Using carbon foil run to determine the z position of HyCal
- Complexity in the z position of HyCal clusters
- For each reconstructed HyCal cluster, there is a "hidden" z coordinate associated (not necessary the surface of a module)
- Energy dependence: high energy particles go deeper into the calorimeter
- HyCal is made of two different material, LG surface is 10.12 cm more upstream than PWO
- The goal is to find a common z plane on HyCal, so that the interaction vertex, GEM hit and HyCal hit fall on the same straight line
- First approach:
- based on the angular correction function in PrimEx
- After project all hits onto the "shower z plane", Look at distribution of delta r (hycal R-GEM r) as a function of GEM r. The mean value should be consistent with 0

Finding the Shower Z Plane

- No correction applied
- Commonz plane assume to be 5817 mm
- ep and ee1 are selected based on 3 sigma cuts around expected energy
- ee2 requires delta phi < 20 deg, in addition to 3 sigma energy cut

Finding the Shower Z Plane

- PrimEx angular correction (my understanding):
- The distance between module surface and the measured z position of a HyCal cluster is given by: $d z=X_{0} * \ln \left(1+E_{R} / E_{C}\right)$
- E_{R} is the reconstructed cluster energy
- X_{0} and E_{c} are two hard-coded parameters
- X_{0} is 26.7 (8.6) cm for LG (PWO), very close to the radiation length of TF-1 type lead glass and lead tungstate
- E_{c} is 2.84 (1.1) MeV for LG(PWO), very different from the critical energy of the two materials
- We can use the surface of PWO as the common z plane
- From PDG, the maximum shower depth is given by:
- $\mathrm{t}_{\text {max }}=\mathrm{X}_{0} * \ln \left(\mathrm{E}_{\mathrm{R}} / \mathrm{E}_{\mathrm{c}}\right)-0.5$ for electron

Finding the Shower Z Plane

- After apply the correction, project all hits to plane at 5817 mm
- If all points fall roughly on a straight line, then it is possible to be corrected by shifting the z coordinate of the plane

Finding the Shower Z Plane

- The slope of the straight line tells how much the actual commonz plane ($z_{\text {real }}$) deviate from the assumed common z plane ($z_{\text {assumed }}$)
- $\Delta R=\tan (\boldsymbol{\theta})^{*} \Delta z$
- ΔR is $R_{\text {HyCal }}-R_{G E M}$
- $\Delta \mathrm{z}$ is $\mathrm{z}_{\text {real }}-\mathrm{z}_{\text {assumed }}$
- $\tan (\boldsymbol{\theta})$ is approximately $R_{\text {GEM }} / z_{\text {assumed }}$
- So $\Delta R=\left(R_{G E M} / z_{\text {assumed }}\right) * \Delta z$ or $\Delta R=\left(R_{G E M}\right) *\left(\Delta z / z_{\text {assumed }}\right)$

First order polynomial fit for ep in PWO

Finding the Shower Z Plane

- From PDG, the maximum shower depth is given by:
- $\mathrm{t}_{\text {max }}=\mathrm{X}_{0} * \ln \left(\mathrm{E}_{\mathrm{R}} / \mathrm{E}_{\mathrm{c}}\right)-0.5$ for electron
- Test this function form using the PrimEx parameters

