# Results from PRad Experiment

Xinzhan Bai University of Virginia

PRad Collaboration Meeting 12/06/2019

# Outline

- Proton charge radius puzzle
- PRad experiment
- Analysis and results
- Summary

## Proton Charge Radius Puzzle

E-p elastic scattering



- Combined CODATA average:
- *ep* scattering average (CODATA): ٠
- Muon spectroscopy: ٠
- H spectroscopy (2017):
- H spectroscopy (2018): ٠

- $0.879 \pm 0.011$  fm
- $0.8409 \pm 0.0004$  fm (CREMA 2010, 2013)
- $0.8335 \pm 0.0095$  fm (A. Beyer et al. Science 358 6359 (2017))
- $0.877 \pm 0.013$  fm (H. Fleurbaey et al. PRL 120 183001 (2018))

## ep Elastic Scattering

• Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\ 2}(Q^2) + \frac{\tau}{\epsilon} G_M^{p\ 2}(Q^2)\right)$$

$$Q^2 = 4EE' \sin^2 \frac{\theta}{2} \quad \tau = \frac{Q^2}{4M_p^2} \quad \epsilon = \left[1 + 2(1+\tau) \tan^2 \frac{\theta}{2}\right]^{-1}$$

• Structure-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{\alpha^2 [1 - \beta^2 \sin^2 \frac{\theta}{2}]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- $G_E$  and  $G_M$  can be extracted using Rosenbluth separation
- For PRad, cross section dominated by G<sub>F</sub>



Derivative at low Q<sup>2</sup> limit

$$\left\langle r^2 \right\rangle = - \left. 6 \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0} \right|_{Q^2 = 0}$$

## PRad Experiment Overview

- PRad goal: measure proton charge radius using ep elastic scattering
- Covers two orders of magnitude in low Q<sup>2</sup> with the same detector setting
   1. ~ 2 x 10<sup>-4</sup> 6 x 10<sup>-2</sup> GeV<sup>2</sup>
- Unprecedented low Q<sup>2</sup> (~ 2 x 10<sup>-4</sup> GeV<sup>2</sup>)
  - 1. Fill in very low  $Q^2$  region
- Normalize to the simultaneously measured Møller scattering process
  - 1. Best known control of systematics
- Extract the radius with precision from sub-percent cross section measurement



#### Jefferson Laboratory



PRad was one of the first experiments to run at Jefferson lab after its major upgrade

#### Hall B



- Windowless H<sub>2</sub> gas flow target
- Vacuum chamber (reduce beam line background)
- Two high resolution (72um), large area (120cm X 120 cm), GEM detectors
- High resolution, large acceptance, hybrid calorimeter (PbWO<sub>4</sub> and Pb-Glass)

Spokesperson:

A. Gasparian, H. Gao, D. Dutta, M. Khandaker

#### Simultaneous detection of $ee \rightarrow ee$ Moller scattering

- Simultaneous detection of Moller (ee→ee) and  $(ep \rightarrow ep)$  events within the same acceptance
  - 1) Best control of systematics
  - 2) Eliminates needs to monitor luminosity
  - 3) Large  $Q^2$  range in a single setting
  - 4) Fill in the very low Q<sup>2</sup> range





PRad Setup (Side View)



PRad Setup (Side View)



• vacuum chamber pressure: 0.3 mTorr





- Two large area GEM detectors
- Small overlap region in the middle
- Excellent position resolution (72 µm)
- Improve position resolution of the setup by > 20 times
- Large improvement for Q<sup>2</sup> determination





- Hybrid EM calorimeter
   (HyCal)
  - Inner 1156 PWO<sub>4</sub> modules
  - Outer 576 lead glass modules

iЕМ

namber

HyCal

\_1.5 m\_

- 5.8 m from the target
- Scattering angle coverage:
   ~ 0.6° to 7.5°
- Full azimuthal angle coverage
- High resolution and efficiency

## Extraction of ep Elastic Scattering Cross Section

• To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section

$$\left(\frac{d\sigma}{d\Omega}\right)_{ep} = \left[\frac{N_{exp}(ep \to ep \ in \ \theta_i \pm \Delta\theta_i)}{N_{exp}(ee \to ee)} \cdot \frac{\epsilon_{geom}^{ee}}{\epsilon_{geom}^{ep}} \cdot \frac{\epsilon_{det}^{ee}}{\epsilon_{det}^{ep}}\right] \left(\frac{d\sigma}{d\Omega}\right)_{ee}$$

• Method1: bin by bin method – taking ep/ee counts from the same angle bin

Cancellation of energy independent part of efficiency and acceptance
 Limited coverage due to double arm Møller acceptance

- Method2: integrated Møller method integrate Møller in a fixed angle range, and use it as common normalization for all angle bins
- Luminosity canceled for both methods

## Analysis - Event Selection

Event selection method

- 1. For all events, require hit matching between GEMs and HyCal
- For ep and ee events, apply angle dependent energy cut based on kinematics
  - 1. Cut size depend on local detector resolution
- 3. For ee, if requiring double-arm events, apply additional cuts
  - 1. Elasticity
  - 2. Co-planarity
  - 3. Vertex z

Cluster energy E' vs. scattering angle  $\theta$  (1.1GeV)



## Extraction of ep Elastic Scattering Cross Section



Cluster energy E' vs. scattering angle  $\theta$  (1.1GeV)

## Extraction of ep Elastic Scattering Cross Section



Cluster energy E' vs. scattering angle  $\theta$  (1.1GeV)

## Analysis - Background Subtraction

- Data with different target configuration was taken for background subtraction and systematic uncertainty study
- Target density profile was fully simulated using COMSOL finite element analysis



## Analysis - Background Subtraction

- Data with different target configuration was taken for background subtraction and systematic uncertainty study
- Target density profile was fully simulated using COMSOL finite element analysis



### **Background Subtraction**

- ep background rate ~ 10% at forward angle (< 1.1 degree, dominated by upstream collimator), less than 2% at angles beyond 1.1 degree
- ee background rate ~0.8% at all angles



19

### **Background Subtraction**

- ep background rate ~ 25% at forward angle (< 1.1 degree, dominated by upstream collimator), less than 5% at angles beyond 1.1 degree
- ee background rate ~2% at all angles





#### Inelastic Contribution

- Using Christy 2018 empirical fit to study inelastic ep contribution
- Good agreement between data and simulation
- Negligible for the PbWO4 region (<3.5), less than 0.2%(2.0%) for 1.1GeV(2.2GeV) in the Lead glass
  region</li>



#### **Radiative Correction**

- Radiative effects corrected by Monte-Carlo method:
  - 1. Geant4 simulation package with full geometry setup
  - 2. Event generators with complete calculations of radiative corrections<sup>1, 2</sup>, include emission of radiative photons
  - 3. Consistent results between generators
  - 4. Include TPE effect<sup>3</sup>, less than 0.2% for ep in PRad kinematcis range
  - 5. Iterative procedure applied for radiative correction

$$\sigma_{ep}^{Born(exp)} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{exp} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{sim} \cdot \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{Born(model)} \cdot \sigma_{ee}^{Born(model)}$$

- 1. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (Fully beyond ultra relativistic approximation)
- 2. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014) 115001
- 3. O. Tomalak, Few Body Syst. 59, no. 5, 87 (2018)

#### Super Ratio

- Super ratio for 1.1 GeV and 2.2 GeV
- After iteration stablized



#### **Differential Cross Section**

- Extracted differential cross section v.s. Q<sup>2</sup>, with 2.2 and 1.1 GeV data
- Statistical uncertainties: ~0.15% for 2GeV, ~0.2% for 1GeV per point
- Systematic uncertainties: 0.3% ~ 1.1% for 2GeV, 0.3 ~ 0.5% for 1GeV



#### **Electric Form Factor**

- 33 points for 1GeV data
- 38 points for 2GeV data



## Form Factor Compare

- Two independent analysis tracks from Duke and UVa
- Radius results agree within statistical uncertainties



## PRad $G_E$ Expansion to the Word Data at Low $Q^2$

- 33 points for 1GeV data
- 38 points for 2GeV data



## Searching the Robust Fitters

- Various fitters tested with a wide range of GE parameterizations, using Prad kinematic range and uncertainties
  - X. Yan et al. Phys. Rev. C98, 025204 (2018)
- Rational (1, 1), 2<sup>nd</sup> order z transformation and 2<sup>nd</sup> order continuous fraction are identified as robust fitters with reasonable uncertainties



## The Radius Result



### **Results** Compare

2GeV cross section and form factor compare



### **Results** Compare

• 1GeV cross section and form factor compare



## Systematic Uncertainties

• Major sources of systematic uncertainties

| Item                 | $R_p$ uncertainty (fm) | $n_1$ uncertainty | $n_2$ uncertainty |
|----------------------|------------------------|-------------------|-------------------|
| Event selection      | 0.0070                 | 0.0002            | 0.0006            |
| Radiative correction | 0.0069                 | 0.0010            | 0.0011            |
| Detector efficiency  | 0.0042                 | 0.0000            | 0.0001            |
| Beam background      | 0.0039                 | 0.0017            | 0.0003            |
| HyCal response       | 0.0029                 | 0.0000            | 0.0000            |
| Acceptance           | 0.0026                 | 0.0001            | 0.0001            |
| Beam energy          | 0.0022                 | 0.0001            | 0.0002            |
| Inelastic ep         | 0.0009                 | 0.0000            | 0.0000            |
| Total                | 0.0116                 | 0.0020            | 0.0013            |

#### PRad Results on the Radius



## Summary

• The PRad result:

 $\left. \begin{array}{l} R_p = 0.831 \pm 0.007 \; (stat.) & (\text{Duke}) \\ R_p = 0.833 \pm 0.007 \; (stat.) & (\text{UVa}) \end{array} \right\} \pm 0.012 \; (syst.) \; fm$ 

- After almost 10 years, the proton radius puzzle remains interesting
- The PRad Collaboration carried out a first electron scattering experiment using a non-magnetic spectrometer approach calorimeter and GEMs
  - 1. Covers two orders of magnitude in low Q<sup>2</sup> with the same detector setting
  - 2. Unprecedented low Q<sup>2</sup> data set (~ 2x10<sup>-4</sup> GeV<sup>2</sup>) has been collected in ep elastic scattering experiment
  - 3. Simultaneous measurement of ep and ee scattering to reduce systematics
  - 4. Novel use of a window-less cryogenically cooled hydrogen gas target