Results from PRad Experiment

Xinzhan Bai
University of Virginia
PRad Collaboration Meeting
12/06/2019

Outline

- Proton charge radius puzzle
- PRad experiment
- Analysis and results
- Summary

Proton Charge Radius Puzzle

- E-p elastic scattering
- Spectroscopy

- Combined CODATA average:
- ep scattering average (CODATA):
- Muon spectroscopy:
- H spectroscopy (2017):
- H spectroscopy (2018):
$0.8751 \pm 0.00061 \mathrm{fm}$
$0.879 \pm 0.011 \mathrm{fm}$
$0.8409 \pm 0.0004 \mathrm{fm}($ CREMA 2010, 2013 $)$
$0.8335 \pm 0.0095 \mathrm{fm}(\mathrm{A}$. Beyer et al. Science 3586359 (2017))
$0.877 \pm 0.013 \mathrm{fm}$ (H. Fleurbaey et al. PRL 120183001 (2018))

ep Elastic Scattering

- Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}\left(\frac{E^{\prime}}{E}\right) \frac{1}{1+\tau}\left(G_{E}^{p 2}\left(Q^{2}\right)+\frac{\tau}{\epsilon} G_{M}^{p}{ }^{2}\left(Q^{2}\right)\right)
$$

$$
Q^{2}=4 E E^{\prime} \sin ^{2} \frac{\theta}{2} \quad \tau=\frac{Q^{2}}{4 M_{p}^{2}} \quad \epsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta}{2}\right]^{-1}
$$

- Structure-less proton:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}=\frac{\alpha^{2}\left[1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right]}{4 k^{2} \sin ^{4} \frac{\theta}{2}}
$$

- G_{E} and G_{M} can be extracted using Rosenbluth separation
- For PRad, cross section dominated by G_{E}

Taylor expansion of G_{E} at low Q^{2}

$$
G_{E}^{p}\left(Q^{2}\right)=1-\frac{Q^{2}}{6}\left\langle r^{2}\right\rangle+\frac{Q^{4}}{120}\left\langle r^{4}\right\rangle+\ldots
$$

Derivative at low Q^{2} limit

$$
\left\langle r^{2}\right\rangle=-\left.6 \frac{d G_{E}^{p}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}=0}
$$

PRad Experiment Overview

- PRad goal: measure proton charge radius using ep elastic scattering
- Covers two orders of magnitude in low Q^{2} with the same detector setting

1. $\sim 2 \times 10^{-4}-6 \times 10^{-2} \mathrm{GeV}^{2}$

- Unprecedented low $Q^{2}\left(\sim 2 \times 10^{-4} \mathrm{GeV}^{2}\right)$

1. Fill in very low Q^{2} region

- Normalize to the simultaneously measured Møller scattering process

1. Best known control of systematics

- Extract the radius with precision from sub-percent cross section measurement

Jefferson Laboratory

PRad was one of the first experiments to run at Jefferson lab after its major upgrade

PRad Experimental Apparatus

- Windowless H_{2} gas flow target
- Vacuum chamber (reduce beam line background)
- Two high resolution (72 um), large area ($120 \mathrm{~cm} \times 120 \mathrm{~cm}$), GEM detectors

Spokesperson:
A. Gasparian, H. Gao, D. Dutta, M. Khandaker

- High resolution, large acceptance, hybrid calorimeter (PbWO_{4} and $\left.\mathrm{Pb}-\mathrm{Glass}\right)$

Simultaneous detection of ee \rightarrow ee Moller scattering

- Simultaneous detection of Moller (ee $\rightarrow e e$) and (ep \rightarrow ep) events within the same acceptance

1) Best control of systematics
2) Eliminates needs to monitor luminosity
3) Large Q^{2} range in a single setting
4) Fill in the very low Q^{2} range

PRad Experimental Apparatus

PRad Setup (Side View)

PRad Experimental Apparatus

PRad Setup (Side View)
Hydrogen

- vacuum chamber pressure: 0.3 mTorr

PRad Experimental Apparatus
 PRad Setup (Side View)

PRad Experimental Apparatus

- Hybrid EM calorimeter (HyCal)
- Inner $1156 \mathrm{PWO}_{4}$ modules
- Outer 576 lead glass modules
- 5.8 m from the target
- Scattering angle coverage: $\sim 0.6^{\circ}$ to 7.5°
- Full azimuthal angle coverage
- High resolution and efficiency

Extraction of ep Elastic Scattering Cross Section

- To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section

$$
\left(\frac{d \sigma}{d \Omega}\right)_{e p}=\left[\frac{N_{\text {exp }}\left(e p \rightarrow e p \text { in } \theta_{i} \pm \Delta \theta_{i}\right)}{N_{\text {exp }}(e e \rightarrow e e)} \cdot \frac{\epsilon_{\text {geom }}^{e e}}{\epsilon_{g e o m}^{e p}} \cdot \frac{\epsilon_{d e t}^{e e}}{\epsilon_{d e t}^{e p}}\right]\left(\frac{d \sigma}{d \Omega}\right)_{e e}
$$

- Method1: bin by bin method - taking ep/ee counts from the same angle bin

1) Cancellation of energy independent part of efficiency and acceptance
2) Limited coverage due to double arm Møller acceptance

- Method2: integrated Møller method - integrate Møller in a fixed angle range, and use it as common normalization for all angle bins
- Luminosity canceled for both methods

Analysis - Event Selection

Event selection method

1. For all events, require hit matching between GEMs and HyCal
2. For ep and ee events, apply angle dependent energy cut based on kinematics
3. Cut size depend on local detector resolution
4. For ee, if requiring double-arm events, apply additional cuts
5. Elasticity
6. Co-planarity
7. Vertex z

Cluster energy E^{\prime} vs. scattering angle θ (1.1 GeV)

Extraction of ep Elastic Scattering Cross Section

- ep cross section is normalized to the Møller cross section
$\left(\frac{d \sigma}{d \Omega}\right)_{e p}=\left[\frac{N_{\text {exp }}\left(e p \rightarrow e p \text { in } \theta_{i} \pm \Delta \theta_{i}\right)}{N_{\text {exp }}(e e \rightarrow e e)} \cdot \cdot \frac{\epsilon_{g e e m}^{e e}}{\epsilon_{\text {geom }}^{e p}} \cdot \frac{\epsilon_{d e t}^{e e}}{\epsilon_{\text {det }}^{e p}}\right]\left(\frac{d \sigma}{d \Omega}\right)$
- Method 1: bin by bin method - taking ep/ee counts from the same angle bin

1) Cancellation of energy independent part of efficiency and acceptance
2) Limited coverage due to double arm Møller acceptance

Cluster energy E^{\prime} vs. scattering angle $\theta(1.1 \mathrm{GeV})$

Extraction of ep Elastic Scattering Cross Section

- ep cross section is normalized to the Møller cross section
$\left(\frac{d \sigma}{d \Omega}\right)_{e p}=\left[\frac{N_{\text {exp }}\left(e p \rightarrow e p \text { in } \theta_{i} \pm \Delta \theta_{i}\right)}{N_{\text {exp }}(e e \rightarrow e e)} \cdot \frac{\epsilon_{\text {geom }}^{e e}}{\epsilon_{\text {geom }}^{e p}} \cdot \frac{\epsilon_{\text {det }}^{e e}}{\epsilon_{\text {det }}^{e p}}\right]\left(\frac{d \sigma}{d \Omega}\right)$
- Method 2: integrated Møller method integrate Møller in a fixed angle range, and use it as common normalization for all angle bins
- Luminosity canceled for both methods

Cluster energy E^{\prime} vs. scattering angle $\theta(1.1 \mathrm{GeV})$

Analysis - Background Subtraction

- Data with different target configuration was taken for background subtraction and systematic uncertainty study
- Target density profile was fully simulated using COMSOL finite element analysis

Analysis - Background Subtraction

- Data with different target configuration was taken for background subtraction and systematic uncertainty study
- Target density profile was fully simulated using COMSOL finite element analysis

Target

Background Subtraction

- ep background rate $\sim 10 \%$ at forward angle (< 1.1 degree, dominated by upstream collimator), less than 2% at angles beyond 1.1 degree
- ee background rate $\sim 0.8 \%$ at all angles

Background Subtraction

- ep background rate $\sim 25 \%$ at forward angle (< 1.1 degree, dominated by upstream collimator), less than 5% at angles beyond 1.1 degree
- ee background rate $\sim 2 \%$ at all angles

Inelastic Contribution

- Using Christy 2018 empirical fit to study inelastic ep contribution
- Good agreement between data and simulation
- Negligible for the PbWO4 region (<3.5), less than $0.2 \%(2.0 \%)$ for $1.1 \mathrm{GeV}(2.2 \mathrm{GeV})$ in the Lead glass region

Radiative Correction

- Radiative effects corrected by Monte-Carlo method:

1. Geant4 simulation package with full geometry setup
2. Event generators with complete calculations of radiative corrections ${ }^{1,2}$, include emission of radiative photons
3. Consistent results between generators
4. Include TPE effect ${ }^{3}$, less than 0.2% for ep in PRad kinematcis range
5. Iterative procedure applied for radiative correction

$$
\sigma_{e p}^{B o r n}(\exp)=\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{e x p} /\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{\operatorname{sim}} \cdot\left(\frac{\sigma_{e p}}{\sigma_{e e}}\right)^{\operatorname{Born}(\text { model })} \cdot \sigma_{e e}^{B o r n(m o d e l)}
$$

1. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (Fully beyond ultra relativistic approximation)
2. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014) 115001
3. O. Tomalak, Few Body Syst. 59, no. 5, 87 (2018)

Super Ratio

- Super ratio for 1.1 GeV and 2.2 GeV
- After iteration stablized
1.1 GeV data

2.2 GeV data

Differential Cross Section

- Extracted differential cross section v.s. Q^{2}, with 2.2 and 1.1 GeV data
- Statistical uncertainties: $\sim 0.15 \%$ for $2 \mathrm{GeV}, \sim 0.2 \%$ for 1 GeV per point
- Systematic uncertainties: 0.3% ~ 1.1% for $2 \mathrm{GeV}, 0.3$ ~ 0.5% for 1 GeV

Electric Form Factor

- 33 points for 1 GeV data
- 38 points for 2 GeV data

Form Factor Compare

- Two independent analysis tracks from Duke and UVa
- Radius results agree within statistical uncertainties
G_{E} from two analysis

G_{E} difference of two analysis

PRad G_{E} Expansion to the Word Data at Low Q ${ }^{2}$

- 33 points for 1 GeV data
- 38 points for 2 GeV data

Searching the Robust Fitters

- Various fitters tested with a wide range of GE parameterizations, using Prad kinematic range and uncertainties
- X. Yan et al. Phys. Rev. C98, 025204 (2018)
- Rational (1,1), $2^{\text {nd }}$ order z transformation and $2^{\text {nd }}$ order continuous fraction are identified as robust fitters with reasonable uncertainties

$$
\begin{array}{|c|}
\hline \text { Rational }(1,1) \\
p_{0} \frac{1+p_{1} Q^{2}}{1+p_{2} Q^{2}} \\
\hline \hline 2^{\text {nd }} \text { order } z \text { transformation } \\
p_{0}\left(1+p_{1} z+p_{2} z^{2}\right) \\
z=\frac{\sqrt{T_{c}+Q^{2}}-\sqrt{T_{c}-T_{0}}}{\sqrt{T_{c}+Q^{2}}+\sqrt{T_{c}-T_{0}}} \\
\hline 2^{\text {nd }} \text { order continuous faction } \\
p_{0} \frac{1}{1+\frac{p_{1} Q^{2}}{1+p_{2} Q^{2}}} \\
\hline
\end{array}
$$

The Radius Result

- n_{1} and n_{2} obtained by fitting PRad G_{E} to $\left\{\begin{array}{l}n_{1} f\left(Q^{2}\right), \text { for } 1 \mathrm{GeV} \text { data } \\ n_{2} f\left(Q^{2}\right), \text { for } 2 \mathrm{GeV} \text { data }\end{array}\right.$
X. Yan et al. PRC 98, 025204 (2018)
- G_{E}^{\prime} as normalized electric form factor: $\left\{\begin{array}{l}G_{E} / n_{1}, \text { for } 1 \mathrm{GeV} \text { data } \\ G_{E} / n_{2}, \text { for } 2 \mathrm{GeV} \text { data }\end{array}\right.$

$$
\left.\begin{array}{ll}
R_{p}=0.831 \pm 0.007(\text { stat.) } & \text { (Duke) } \\
R_{p}=0.833 \pm 0.007(\text { stat.) } & \text { (UVa) }
\end{array}\right\} \pm 0.012 \text { (syst.) fm }
$$

> Using rational $(1,1)$
> $f\left(Q^{2}\right)=\frac{1+p_{1} Q^{2}}{1+p_{2} Q^{2}}$

Proton Electric Form Factor $\mathrm{G}_{\mathrm{E}}^{\prime}$

$$
n_{l}=1.0002+/-0.0002 \text { (stat.) +/- } 0.0020 \text { (syst.), }
$$

$$
n_{2}=0.9983+/-0.0002 \text { (stat.) }+/-0.0013 \text { (syst.) }
$$

Results Compare

- 2 GeV cross section and form factor compare

Cross section compare - 2 GeV

Form factor compare - 2 GeV

Results Compare

- 1 GeV cross section and form factor compare

Form factor compare - 1 GeV

Systematic Uncertainties

- Major sources of systematic uncertainties

Item	R_{p} uncertainty (fm)	n_{1} uncertainty	n_{2} uncertainty
Event selection	0.0070	0.0002	0.0006
Radiative correction	0.0069	0.0010	0.0011
Detector efficiency	0.0042	0.0000	0.0001
Beam background	0.0039	0.0017	0.0003
HyCal response	0.0029	0.0000	0.0000
Acceptance	0.0026	0.0001	0.0001
Beam energy	0.0022	0.0001	0.0002
Inelastic ep	0.0009	0.0000	0.0000
Total	0.0116	0.0020	0.0013

PRad Results on the Radius

Summary

- The PRad result:

$$
\left.\begin{array}{ll}
R_{p}=0.831 \pm 0.007 \text { (stat.) } & \text { (Duke) } \\
R_{p}=0.833 \pm 0.007 \text { (stat.) } & \text { (UVa) }
\end{array}\right\} \pm 0.012 \text { (syst.) fm }
$$

- After almost 10 years, the proton radius puzzle remains interesting
- The PRad Collaboration carried out a first electron scattering experiment using a non-magnetic spectrometer approach - calorimeter and GEMs

1. Covers two orders of magnitude in low Q^{2} with the same detector setting
2. Unprecedented low Q^{2} data set ($\sim 2 \times 10^{-4} \mathrm{GeV}^{2}$) has been collected in ep elastic scattering experiment
3. Simultaneous measurement of ep and ee scattering to reduce systematics
4. Novel use of a window-less cryogenically cooled hydrogen gas target
