Event separation with Ebeam $=1101 \mathrm{MeV}$

Event separation with Ebeam $=550 \mathrm{MeV}$

Event separation with Ebeam $=550 \mathrm{MeV}$

Event separation with Ebeam $=550 \mathrm{MeV}$

- So to go below $1 \mathrm{e}-4 \mathrm{GeV}^{2}$ for minimum Q^{2} with beam energy 550 MeV , we need to go down to at least 1deg for the scattering angle
- Possible solution:

1. Use tighter event selection cut (2 sigma)
2. Detect double arm Moller to veto the Moller in smaller angle region when selecting e-p
3. Use recoil detector to detect the recoiled proton

Double arm Moller acceptance with Ebeam $=1101 \mathrm{MeV}$

First electron angle [deg]

Double arm Moller acceptance with Ebeam $=550 \mathrm{MeV}$

First electron angle [deg]

Summary for Ebeam $=550 \mathrm{MeV}$

- Solution 1 (using tighter kinematic cuts):

1. With 3sigma cut, we can go down to theta $=1.20$ deg, or $Q_{\min }^{2}=1.3 \times 10^{-4} \mathrm{GeV}^{2}$
2. With 2 sigma cut, we can go down to theta $=0.94$ deg, or $Q_{\text {min }}^{2}=8 \times 10^{-5} \mathrm{GeV}^{2}$

- Solution 2 (using double arm Moller to veto Moller):

1. If we want to have a full azimuthal angle acceptance for Moller, we can only go down to 1.17 deg, below this angle, some of the Moller will not hit HyCal, and we have only 1 hit. Basically this is not helping.
2. If we do not require full azimuthal angle acceptance, this means that we can only do this veto for certain azimuthal angle, we can get down to 0.87 deg , or $Q_{\min }^{2}=$ $7 \times 10^{-5} \mathrm{GeV}^{2}$. But certainly will get larger systematic uncertainty.
