Target profile: delta function at 0 cm vs delta functions at +/- 2cm

Extended target effect should be negligibly small

Target profile: delta function at 0 cm vs delta functions at +/- 10cm

Target profile: delta function at 0 cm vs delta functions at +/- 20cm

Target profile

Assume uniform distribution inside target, tail decay as $1/(R + par)^2$

10¹⁷

10¹⁶

10¹⁵

10¹

10¹³

10¹²

-400

-600

-800

-200

200

0

400

If using Yang's profile, the residual gas almost has no effect, compared to uniform +/- 2 cm profile

Profiles normalized by integrals from -75 cm to 75 cm

Profiles normalized by integrals from -75 cm to 75 cm

Profiles normalized by integrals from -75 cm to 75 cm

cm

Profiles normalized by integrals from -75 cm to 75 cm

Profiles normalized by integrals from -75 cm to 75 cm

ep/ee ratio from different profile

Ratios normalized to the case with uniform +/- 2cm within the target cell

Yields from different profile

Yields normalized to the case with uniform +/- 2cm within the target cell

Conclusion

- +/- 2cm Extended target effect can be neglected
- With difference profiles, the effect on large angle (>3.5 deg) is very small, so our discrepancy at large angle seem unlikely comes from residual gas effect
- With uniform +/- 2cm, we actually get the minimum ep/ee ratio
- The discrepancy at small angle is that the ep/ee from simulation (using uniform +/- 2cm) is larger than ep/ee ratio from data
- So the discrepancy at small angle cannot not be explain by residual gas effect alone

Separation of PWO and LG

signal_gem_hit_pos_ep

- 600 800 300 400 800 200 360 **4**00 300 -200 200 -400 0050 -600 -600 0 -200 400 600 -400 0 200
- Separate HyCal into two regions, PWO only and LG only
- Check the consistency in the phi overlap region between these two regions

Still a small energy leak tail near transition

- Total E dep is the total energy deposition of a ep event on HyCal, recorded by Geant4, so not going through digitization and reconstruction
- Energy still seem to leak more compared to the data
- -20 < x < 20 mm

Reconstructed ep cluster energy at 3.55 < theta < 3.6 deg

sim_cluster_E_theta

ep/ee super ratio

Theta (deg)

- Using the integrated Moller method
- GEM efficiency calculated for each region separately
- LG result seems consistent with the PWO result

Relative ep and ee yield

Yield with density correction over yield without density correction, GEM efficiencies applyed

GEM efficiency in 2D bins

Threshold dependency of GEM efficiency

