Status of Tagger Reconstruction and HyCal Trigger Efficiency

Maxime Levillain

July 13, 2016

Statistics

	leadglass	crystal
runs	16	34
files	579	1069
size	$\sim\!\!1.1$ To	\sim 2.1 To
events	\sim 128 M	\sim 235 M
usable events	\sim 16 M	\sim 29 M
usable events per module	\sim 27 k	\sim 25 k

Tagger Mapping

- For both E and T counters
- 16 block swaps:

$$0{+}32{\cdot}i\rightarrow16{+}32{\cdot}i$$

. . .

$$15+32 \cdot i \rightarrow 31+32 \cdot i$$

 $16+32 \cdot i \rightarrow 0+32 \cdot i$

$$31+32 \cdot i \rightarrow 15+32 \cdot i$$

- Missing channels:
 - ► TL20, TL32, TL33
 - ► TR17, TR18, TR19, TR55
 - ► E40, E96, E131, E225, E258, E291

Preliminary Efficiency

- ▶ 3 run analyzed: 960 (crystal), 971(bottom lead glass), 976 (top lead glass)
- ▶ Using calibration gains extracted from physics run (1100)
- Cuts:
 - ET Matching (from the tagger)
 - \triangleright $3\sigma_{E_{\gamma}/E_{Hycal}}$
- ► Formula:

$$\epsilon = \frac{\#\textit{events}(\textit{trigger} \in [\textit{TotalSum}, \textit{LeadglassSum}]}{\#\textit{events}(\textit{trigger} \in [\textit{TotalSum}, \textit{LeadglassSum}, \textit{Tagger}]}$$

Binomial statistical uncertainty

Run 960 (crystal)

- ► Efficiency plateaux from 350-400 MeV
- Overall efficiency of 0.995

Run 971 (bottom leadglass)

- Samples taken with less statistics
- ► Slightly lower efficiency for leadglass: 0.99

Run 976 (top leadglass)

 Efficiency might be affected by transition area

Plans

- ► Replay all runs 889 979 (ongoing)
- Check pedestal and LMS for every run and every module
- Extract calibration gain for all modules from this data
- Extract efficiency (depending on E_{γ}) for every 2x2 module blocks
 - \rightarrow creation of efficiency map for acceptance
- Comparison of calibration gains with calibration gain extracted from physics data

Discussion

► Handling change of gates between run 935 and 946

Handling difference of calibration gains