

Data Quality and Analysis Status of PRad Experiment at Jefferson Lab

Weizhi Xiong

Duke University

For the PRad Collaboration

Spokespersons: A. Gasparian(contact person), D. Dutta, M. Khandaker, H. Gao

APS April Meeting 2017 January 15th, 2016

Outline

- Proton charge radius puzzle and PRad experiment
- PRad experimental apparatus
- Data quality and current status
- Summary

- Electronic measurement (ep elastic + ordinary H spectroscopy) v.s. muonic measurement (muonic H spectroscopy)
- μ p Lamb shift measurements by CREMA (2010, 2013)
 - Unprecedented precision, <0.1%

Proton Charge Radius from ep Elastic Scattering

• Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon}G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

• Structure-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- G_E and G_M can be extracted using Rosenbluth separation
- For PRad, cross section dominated by G_E

Taylor expansion of G_E at low Q^2

$$G^p_E(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

Derivative at low Q² limit

$$\left< r^2 \right> = - \left. 6 \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0} \right|_{Q^2 = 0}$$

PRad Experiment Overview

- PRad goal: Measuring proton charge radius using ep elastic scattering
- Unprecedented low Q² (~2x10⁻⁴ GeV²)
 - Fill in very low Q² region
- Large Q² range in a single setting
 - ~2x10⁻⁴ 6x10⁻² GeV²
- Calibrate to the simultaneously measured Møller scattering process
 - best known control of systematics
- Aims to extract cross section and radius to sub-percentage level

PRad Experiment Overview

- PRad goal: Measuring proton charge radius using ep elastic scattering
- Unprecedented low Q² (~2x10⁻⁴ GeV²)
 - Fill in very low Q² region
- Large Q² range in a single setting
 - ~2x10⁻⁴ 6x10⁻² GeV²
- Calibrate to the simultaneously measured Møller scattering process
 - best known control of systematics
- Aims to extract cross section and radius to sub-percentage level

• PRad finished data taking in May and June of 2016 in Hall B at Jefferson Lab, with 1.1 and 2.2 GeV electron beam

• vacuum tank pressure: 0.3 mtorr

PRad Setup (Side View)

- Two large area GEM detectors
- Small overlap region in the middle
- Excellent position resolution (~72µm)
- Improve position resolution of the setup by > 20 times
- Similar improvement
 for Q² determination
 at small angle

PRad Setup (Side View)

- Hybrid EM calorimeter
 - Inner 1156 PWO₄ modules
 - Outer 576 lead glass modules
- 5.8m from the target
- Polar angle coverage:
 ~ 0.6° to 7.5°
- Azimuthal angle coverage: 2π
 - High resolution and efficiency

HyCal Resolution and Efficiency

- HyCal energy resolution and trigger efficiency extracted using high energy photon beam from Hall B at Jlab
 - > 99.5% trigger efficiency obtained for E_{γ} > 500 MeV, for various parts of HyCal
 - Energy resolution $\sim 2.6\%$ for PWO₄ part, lead glass part able 2.5 time worse

Performance of GEM Detectors

- GEM detection efficiency measured in both photon beam calibration (pair production) and production runs (ep and ee)
- Using overlap region of GEMs to measure position resolution (\sim 72 μ m)
- Monitoring beam stability production runs

More details see presentation of X. Bai in session E12

PRad Data Analysis Status

Cluster Energy E'vs. Scattering Angle θ

- HyCal calibration accomplished with tagged photon beam and majority of physics data
 - Reached expected energy resolution of 2.6% for PWO₄ modules and 6.2% for lead glass
- Obtained preliminary result for HyCal trigger efficiency (>99.5% for E_{γ} > 500 MeV)
- Detector alignment accomplished, matching of GEMs and HyCal achieved
- Obtained GEM position resolution (72 μ m) and preliminary detection efficiency (~92%)
- Analysis for cross section is ongoing

Summary

- The *Proton Radius Puzzle* is still unsolved after six years
- The PRad experiment is a unique piece to the puzzle:
 - Lowest Q² data set (~2x10⁻⁴ GeV²) has been collected for the first time in ep elastic scattering experiment
 - Data in a large Q² range (~2x10⁻⁴ 6x10⁻² GeV²) have been collected with the same experimental setting
 - Large statistics, high quality, rich data has been collected
 - Systematic uncertainty well under control by simultaneous measurement of ep elastic and Møller processes
- Analysis on the first preliminary result is ongoing

This work was supported in part by NSF-MRI grant PHY-1229153 and US DOE grant DE-FG02-03ER41231