

Status of PRad Experiment

Maxime Levillain

North Carolina A&T State University

for the PRad Collaboration

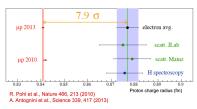
November 2, 2016

Outline

- 1 The Proton Charge Radius
- 2 PRad Setup
- PRad Run
- 4 Data Analysis Status
 - GEM Analysis Status
 - Hycal Analysis Status
- Summary

CLAS12 Collaboration Meeting

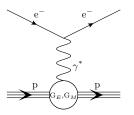
Jefferson Lab

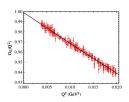

The Proton Charge Radius Puzzle

▶ 4 different methods to measure the proton charge radius

 $\blacktriangleright \sim 8\sigma$ discrepancy between muonic hydrogen spectroscopy and atomic hydrogen measurements

 \triangleright Controverted methods for fitting G_E and extracting r_p

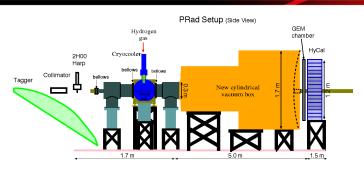



ep Scattering

- Previous measurement with strong systematic uncertainties and limited Q² range
- Requirements for PRad Experiment:
 - ▶ large Q² range
 - very low Q²
 - controlled systematics at sub-percent precision
- Extraction of $< r^2> = -6 \cdot \left. \frac{dG_E^{\nu}}{dQ^2} \right|_{Q^2=0}$ through

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{M,\text{tr}} \frac{E'}{E} \frac{1}{1+\tau} \left(G_E^{p2}(Q^2) + \frac{\tau}{\epsilon} G_M^{p2}(Q^2)\right)$$

Phys. Rev. C 93, 065207


PRad Timeline

•	2011 - 2012 2012	Initial Proposal Approved by JLab PAC39
•	2012	Funding proposal for windowless H ₂ gas flow targe
•	2012 - 2015	Development, construction of the target
•	2013	Funding proposals for the GEM detectors
•	2013 - 2015	Development, construction of the GEM detectors
•	2015, 2016	Experiment Readiness Reviews
•	January/April 2016	Beam line installation
•	May 2016	Beam Commissioning
•	May 24 - May 31	Detectors Calibration
•	June 4 - June 15	1.1 GeV Data Taking
•	June 15 - June 22	2.2 GeV Data Taking

PRad Setup

- lacktriangle Electron beam or tagged photon beam at $\sim 1 \text{GeV}$ or $\sim 2 \text{GeV}$
- ▶ Windowless *H*₂ gas flow target
- Vacuum box

- GEM detectors
- Primex HyCal

Windowless H₂ Gas Flow Target

 gas target of cryogenically cooled hydrogen

▶ diameter: 8cm, length: 4cm

▶ temperature: 19.5 K

• cell density: $\sim 2 \cdot 10^{18} \text{ H}$ atoms/cm²

cell pressure: 471 mtorr

chamber pressure: 2.34 mtorr

Vacuum Box

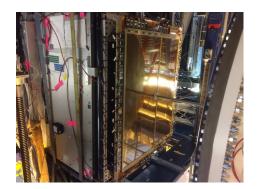
- ▶ 1.7 m diameter, 2mm Al vacuum window
- ightarrow Limited background

Primex HyCal

Hybrid detector:

- Central part:
 - ▶ 34 x 34 matrix of PbWO₄ detectors
 - ► dimension of block: 2.077 x 2.075 x 18 cm³
 - 2 x 2 blocks removed from the middle

- ► Peripheral Part:
 - ► 576 Leadglass detectors
 - ► dimension of block: 3.815 x 3.815 x 45 cm³



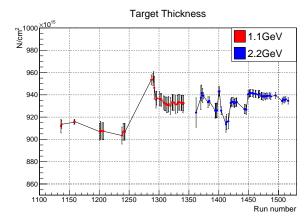
GEM Detectors

- ▶ Two large area GEM detectors: 55cm x 123 cm
- ightharpoonup Purpose: improve spatial resolution ightarrow 100 μ m
- Less uncertainties on θ and Q^2

Outline

- The Proton Charge Radius
- PRad Setup
- PRad Run
- **Data Analysis Status**
 - GEM Analysis Status
 - Hycal Analysis Status
- Summary

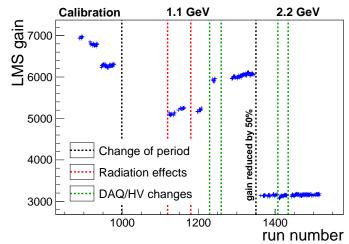
Data Collected


- Calibration with tagged photon beam
 - Every module moved in front of beam
 - Allows study of resolution, linearity, trigger efficiency
- ▶ 1.1 GeV electron beam
 - ▶ 4.2 mC
 - ▶ 604 M events with target
 - ▶ 53 M events with "empty target"
 - 25 M events with ¹²C target for calibration
- 2.2 GeV electron beam
 - ▶ 14.3 mC
 - 756 M events with target
 - 38 M events with "empty target"
 - ▶ 10.5 M events with ¹²C target for calibration

Target Stability

 Control of target properties (pressure, temperature, position) via EPICS

→ Less than 2% deviation

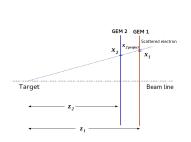

Weizhi Xiong

HyCal Stability

 Control of Calorimeter gain throughout the data taking thanks to the Light Monitoring System (LMS)

Outline

- The Proton Charge Radius
- PRad Setup
- PRad Run
- 4 Data Analysis Status
 - GEM Analysis Status
 - Hycal Analysis Status
- Summary


CLAS12 Collaboration Meeting

GEM Resolution

 Extraction of GEM resolution using GEM central overlapping region

25000

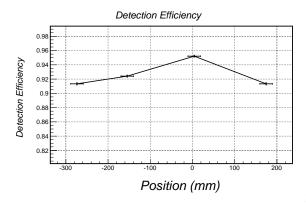
σ = 72 μm

15000

10000

5000

mm


Xinzhan Bai

▶ Spatial resolution $< 74\mu m$

GEM Detection Efficiency

- Study of efficiency with photon tagged beam
 - Scintillators added on the beam line before GFM detector.
 - Efficiency calculated using scintillators and HyCal trigger coincidence

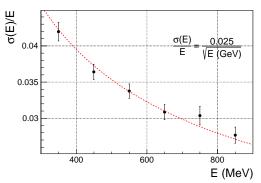
Xinzhan Bai

Detection efficiency of 0.92

HyCal Calibration Process

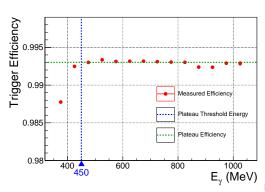
- ► Gains controlled by *Light Monitoring System (LMS)*
- Two different calibrations:
 - ► Before data taking: Scan with 250-1050 MeV tagged photon beam moved in front of each module
 - ightarrow study of resolution, efficiency and non linearity
 - During physics data taking: With Møller and ep events
- Iterative method:

$$gain_{module}(n+1) = gain_{module}(n) / < E_{measured} / E_{expected} >$$


▶ Different clustering *Island* algorithms used for cross-check

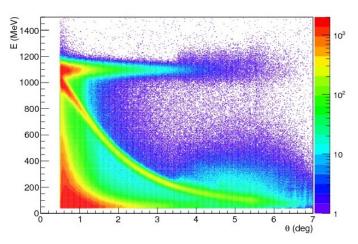
HyCal Resolution

 Crystal energy resolution with statistical uncertainties and systematic coming from non-uniformity


Li Ye, Ilya Larin, Weizhi Xiong, Maxime Levillain

- Achieved expected energy resolution:
 - ▶ 2.5% for crystal part
 - ▶ 6.1% for leadglass part

HyCal Trigger Efficiency

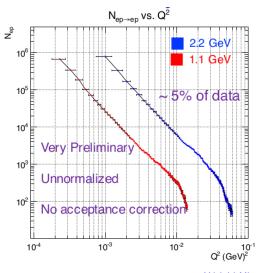

Maxime Levillain

- Plateau from 450 MeV with an efficiency of 0.994
- Good uniformity

Phase Space (1.1 GeV)

Weizhi Xiong

▶ Separation between *ep* scattering and Møller phase space for $\theta > 0.5^{\circ}$


Preliminary Q^2 range

No normalization and acceptance correction yet

▶ 1.1 GeV data set: $Q^2 \in [2 \cdot 10^{-4}, 1.3 \cdot 10^{-2}]$

2.2 GeV data set: $Q^2 \in [8 \cdot 10^{-4}, 6 \cdot 10^{-2}]$

Weizhi Xiong

Summary

- The PRad experiment was uniquely designed to address the Proton Radius Puzzle
- ▶ The experiment was successfully performed in May-June 2016
- GEM calibration and alignment are finalized
 - \rightarrow spatial resolution of 74 μ m and detection efficiency of 0.92
- HyCal calibration from photon tagged beam finalized
 - \rightarrow good energy resolution and high and uniform efficiency
- HyCal physics calibration on progress
- ► The physics analysis will start soon!

PRad is supported in part by NSF MRI award PHY-1229153, as well as DOE awards for GEM; my research work is supported by NSF awards: PHY-1506388 and PHY-0855543

CLAS12 Collaboration Meeting

Jefferson Lab