Status of PRad Experiment

Maxime Levillain

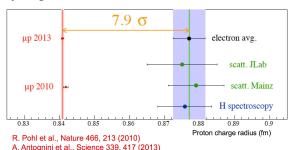
North Carolina A&T State University

for the PRad Collaboration

November 2, 2016

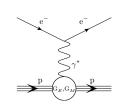
Outline

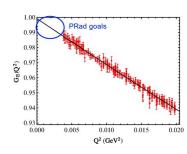
- 1 The Proton Charge Radius
- 2 PRad Setup
- PRad Run
- 4 Data Analysis Status
 - GEM Analysis Status
 - HyCal Analysis Status
- **5** Summary


The Proton Charge Radius Puzzle

4 different methods to measure the proton charge radius

 $ightharpoonup \sim 8\sigma$ discrepancy between muonic hydrogen spectroscopy and atomic hydrogen measurements


▶ Model dependent fitting of G_E to extract r_p

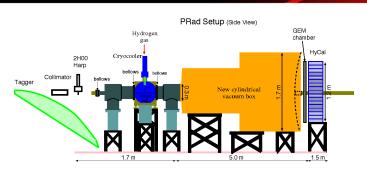

ep Scattering

- Previous measurements have large systematic uncertainties and a limited coverage at small Q²
- Requirements for PRad Experiment:
 - ▶ large Q² range
 - extend to very low Q²
 - controlled systematics at sub-percent precision
- ▶ Extraction of $< r^2 > = -6 \cdot \frac{dG_E^p}{dQ^2} \Big|_{Q^2 = 0}$ through:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mort} \frac{E'}{E} \frac{1}{1+\tau} \left(G_E^{\rho 2}(Q^2) + \frac{\tau}{\epsilon} G_M^{\rho 2}(Q^2)\right)$$

Phys. Rev. C 93, 065207

PRad Timeline



•	2011 - 2012 2012	Initial proposal Approved by JLab PAC39
•	2012	Funding proposal for windowless H_2 gas flow target
•	2012 - 2015	Development, construction of the target
•	2013	Funding proposals for the GEM detectors
•	2013 - 2015	Development, construction of the GEM detectors
•	2015, 2016	Experiment readiness reviews
•	January/April 2016	Beam line installation
•	May 2016	Beam commissioning
•	May 24 - May 31	Detectors calibration
•	June 4 - June 15	1.1 GeV data taking
•	June 15 - June 22	2.2 GeV data taking

4 / 22

PRad Setup

- lacktriangle Electron beam or tagged photon beam at ~ 1 GeV and ~ 2 GeV
- ▶ Windowless *H*₂ gas flow target
- Vacuum box

- ► GEM detectors
- Primex HyCal

Windowless H₂ Gas Flow Target

- gas target of cryogenically cooled hydrogen at 19.5 K
- beam opening: 2 mm, length: 4 cm
- cell density: $\sim 2 \cdot 10^{18} \text{ H atoms/cm}^2$
- pressures:
 - ▶ cell pressure: 471 mTorr
 - chamber pressure: 2.34 mTorr
 - vacuum chamber pressure: 0.3 mTorr

Developed and build by JLab target group

Vacuum Box

- ▶ 1.7 m diameter, 2 mm aluminum vacuum window
- ightarrow Limited background

Primex HyCal

Hybrid detector:

- Central part:
 - ▶ 34 x 34 matrix of PbWO₄ detectors
 - dimension of block: $2 \times 2 \times 18 \text{ cm}^3$
 - 2 x 2 blocks removed from the center for beam line to pass through
- ► Peripheral part:
 - ► 576 lead glass detectors
 - dimension of block: 4 x 4 x 45 cm³
- Successfully used for Primex experiments

GEM Detectors

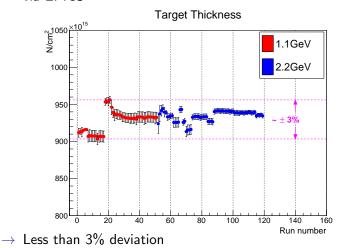
- ► Two large area GEM detectors: 55 cm x 123 cm
- Purpose:
 - \blacktriangleright improve spatial resolution by a factor 20 to 40 \rightarrow 100 $\mu \mathrm{m}$
 - \rightarrow to reduce uncertainties on θ and Q^2
- Central overlap between the 2 planes and central hole for the beam line

Developed and build by UVA

Outline

- 1 The Proton Charge Radius
- PRad Setup
- 3 PRad Run
- 4 Data Analysis Status
 - GEM Analysis Status
 - HyCal Analysis Status
- Summary

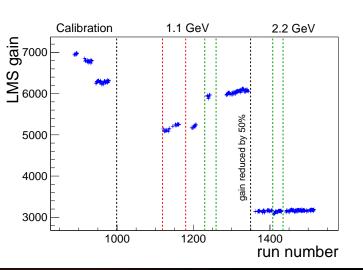
Data Collected

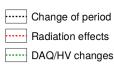


- Calibration with tagged photon beam
 - Every calorimeter module moved into the beam
 - ▶ Allows study of resolution, linearity, trigger efficiency
- ▶ 1.1 GeV electron beam
 - ▶ 4.2 mC
 - ▶ 604 M events with target
 - 53 M events with "empty target"
 - 25 M events with ¹²C target for calibration
- 2.2 GeV electron beam
 - ▶ 14.3 mC
 - ▶ 756 M events with target
 - ▶ 38 M events with "empty target"
 - ▶ 10.5 M events with ¹²C target for calibration

Target Stability

Control of target properties (pressure, temperature, position)
 via EPICS

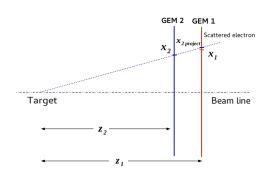


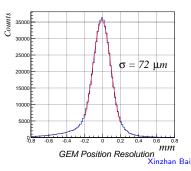

Weizhi Xiong

HyCal Gain Stability

► Control of HyCal gain with its *Light Monitoring System (LMS)*

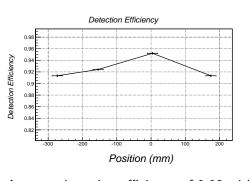
Outline




- 1 The Proton Charge Radius
- PRad Setup
- PRad Run
- 4 Data Analysis Status
 - GEM Analysis Status
 - HyCal Analysis Status
- 5 Summary

GEM Spatial Resolution

 Extraction of GEM spatial resolution using GEM central overlapping region


15 / 22

Good spatial resolution achieved

GEM Detection Efficiency

- Study of efficiency with tagged photon beam
 - Scintillators added on the beam line before GEM detector
 - Efficiency calculated using scintillators and HyCal matching

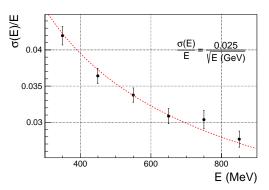
scanned points E 600 A 000 A 000

- ▶ Average detection efficiency of 0.92 with 0.12% of statistical uncertainty
- GEM are also calibrated using physics runs

HyCal Energy Calibration

- ► Gains controlled by *Light Monitoring System (LMS)*
- Two different calibrations:
 - Before data taking:
 Scan with 250-1050 MeV tagged photon beam moved in front of each module
 - ightarrow study of resolution, efficiency and non linearity
 - During physics data taking: With Møller and ep events
- Iterative method:

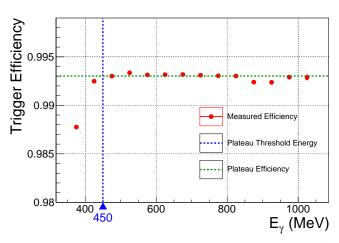
$$gain_{module}(n+1) = \frac{gain_{module}(n)}{\langle E_{measured} / E_{expected} \rangle}$$


▶ Different clustering algorithms used for cross-check

17 / 22

HyCal Resolution

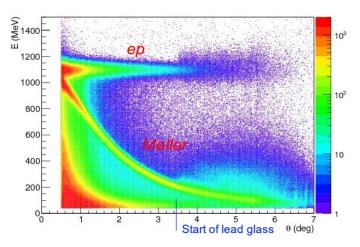
 Crystal energy resolution with statistical uncertainties and systematic coming from non-uniformity



Li Ye, Ilya Larin, Weizhi Xiong, Maxime Levillain

- Achieved expected energy resolution:
 - ▶ 2.5% at 1 GeV for crystal part
 - ▶ 6.1% at 1 GeV for lead glass part

HyCal Trigger Efficiency



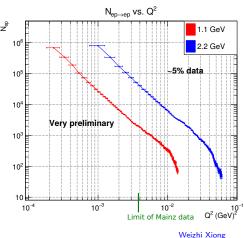
Maxime Levillain

- Plateau from 450 MeV with an efficiency of 0.994
- Good uniformity

Phase Space (1.1 GeV)

Weizhi Xiong

> Separation between *ep* scattering and Møller events possible for $\theta > 0.7~^\circ$


Range

No normalization and acceptance correction

▶ 1.1 GeV data set: $Q^2 \in [2 \cdot 10^{-4}, 1.3 \cdot 10^{-2}] \text{ GeV}^2$

2.2 GeV data set: $Q^2 \in [8 \cdot 10^{-4}, 6 \cdot 10^{-2}] \text{ GeV}^2$

Summary

- ► The PRad experiment was uniquely designed to address the Proton Radius Puzzle
- ▶ The experiment was successfully performed in May-June 2016
- GEM calibration and alignment are finalized
 - \rightarrow spatial resolution of 72 $\mu\mathrm{m}$ and detection efficiency of 0.92±0.001
- HyCal calibration from photon tagged beam finalized
 - ightarrow good energy resolution and high and uniform efficiency
- HyCal and GEM calibration with physics events in progress
- The physics analysis will start soon!

Thanks to JLab, Hall B, Accelerator Division and Target Group

PRad is supported in part by NSF MRI award PHY-1229153, as well as DOE awards for GEM; my research work is supported by NSF awards: PHY-1506388 and PHY-0855543