Simulation for PRad Experiment at JLab¹

Li Ye Mississippi State University for the PRad collaboration

¹.This work is supported in part by NSF MRI award PHY-1229153, the U.S. Department of Energy under Contacts No. DE-FG02-07ER41528, Thomas Jefferson National Laboratory, Mississippi State University and PRad collaboration

Outline

- PRad Physics goals
- Experimental setup
- Monte-Carlo Simulation
- GEANT4 geometry and beam profile
- Background study and subtraction
- Radius extraction
- Summary

The Proton Charge Radius Puzzle

- Muonic hydrogen Lamb shift experiment at PSI (2010,2013)
- r_p = 0.84184(67) fm Unprecedented less than 0.1% precision
- 7 o discrepancy from most of previous experimental results and analyses

The PRad Experiment (E12-11-106)

- Experimental goals:
 - reach very low Q² range (~ 10 times less than the Mainz experiment)
 - reach sub-percent precision in r_p extraction
- Suggested solutions:
 - Non-magnetic-spectrometer method: use high resolution high acceptance calorimeter and high position resolution GEM detector
 - reach smaller scattering angles: ($\Theta = 0.8^{\circ} 7.0^{\circ}$) (Q² = 2x10⁻⁴ - 1x10⁻¹) GeV/c² essentially, model independent r_o extraction

Simultaneous detection of $ee \rightarrow ee$ Moller scattering

- (best known control of systematics)
- 3) Use high density windowless H2 gas flow target:
 - beam background fully under control with high quality CEBAF beam
 - minimize experimental background
- Two beam energies: $E_0 = 1.1$ GeV and 2.2 GeV to increase Q² range: (2x10⁻⁴ 1x10⁻¹) GeV/c²
- Will reach sub-percent precision in r_p extraction
- Approved by PAC39 (June, 2012) with high "A" scientific rating

PRad Experimental Setup (schematics)

More details at WeiZhi Xiong's talk in the same section

- More details at WeiZhi Xiong's talk in the same section
- Main detectors and elements:
 - \succ windowless H₂ gas flow target
 - PrimEx HyCal calorimeter
 - vacuum box with one thin window at HyCal end
 - > X,Y GEM detector in front of HyCal

- Beam line equipment:
 - > standard beam line elements (0.1 10 nA)
 - photon tagger for HyCal calibration
 - collimator box (6.4 mm collimator for photon beam, 12.7 mm for e⁻ beam halo "clean-up")
 - ► Harp 2H00
 - pipe connecting Vacuum Window through HyCal

DNP meeting, vancouver, Oct. 2016

Monte-Carlo Simulation

- A thorough simulation study about the possible background sources is important to achieve a sub-percent precision
- The simulation code for the target and the calorimeter was developed based on GEANT4
- Event generators with radiative corrections of e-p and e-e scattering were also developed.

GEANT4 geometry and beam profile

- Target, made of Kapton
 - Cylindrical tube open at both ends and a gas inlet neck
- Calorimeter, central part of HyCal
 - $34 \times 34 \text{ PbWO}_4$ crystal modules with four removed at the center
 - Dimension of each module: 2.05×2.05×18 cm³
 - energy resolution 2.6%/ \sqrt{E} , position resolution 2.5 mm/ \sqrt{E}
- Electron beam, 15 days of beam time
 - 1.1 GeV, 2.2 GeV or higher energy
 - A uniform halo with a peak ratio of 10⁻⁷ to the beam

GEANT4 geometry and beam profile

Simulation geometry update : Flange(winoow Coupling) : material Al, outer diameter 2.3", inner diameter 1.3",

Adapter: material Fe, outer diameter 1.62", inner diameter 1.245",

Quick Disconnect big: material Fe, outer diameter 2", inner diameter 1.39",

Quick Disconnect small: material Fe, outer diameter 1.62", inner diameter 1.39",

Beam Pipe:

material Fe, outer diameter 1.375", inner diameter 1.245", note: the beam pipe is all the way connect to the Adapter in the simulation

Back ground on flange

Back ground on flange

Back ground on flange

 Re-scattered Moller events ground appears at first angle bin of moller region around 2.1% of data

- Background of different distance from flange to HyCal PbWO4 surface
- Total background on HyCal ~120Hz

Back ground on GEMs

E vs Angle

E vs angle

Entries 1014539 Mean x

Mean y

RMS x RMS y

3.5

0.533

644.2

0.6707

437.1 -70C

-600

-500

-400

-300

-200

٥

4

100

Material: G10, Kapton foils, copper, Ar, CO2 ~~0.5% radiation length G10 Frame : 1.5cm ~~7.5% radiation length Distance from Hycal surface : 30cm

Radius extraction

- To obtain a higher precision in extraction. We are trying to extend the Q² coverage in two ways
 - Use the lead glass part of the calorimeter, increasing detecting angle from 4 degree to 10 degree
 - Exploring options to have a higher beam energy (e.g. 2.2 GeV beam)
- Assumed 0.6% systematics for measured cross-sections, extracted radius has a sub-percent precision (dipole fit, $r_p = 0.8768$ fm as the input)

Summary

- The primary background source is from the beam halo, empty target subtraction will help reduce the background.
- A larger Q² coverage is helpful to the radius extraction in this experiment, the expected uncertainty of the extracted radius is less than 1%.
- Radiative corrections are implemented in the simulation.
- Background simulation study helped to make better design of vacuum box window, connection flange and pipe.

