### The PRad Experiment – Manpower and Data Analysis

#### The PRad Experiment Readiness Review March 25, 2016

#### Haiyan Gao

**Duke University and Duke Kunshan University** 





#### **PRad Collaboration Institutional List**

#### 17 collaborating universities and institutions

**Jefferson Laboratory NC A&T State University Duke University Idaho State University** Mississippi State University **Norfolk State University Argonne National Laboratory** University of North Carolina at Wilmington **University of Kentucky Hampton University College of William & Mary University of Virginia** Tsinghua University, China **Old Dominion University ITEP, Moscow, Russia Budker Institute of Nuclear Physics**, Novosibirsk, Russia MIT

#### Collaboration Manpower: (a list with significant manpower)

| Institution                | Senior<br>Researcher | Postdoc                               | Graduate<br>student        | Others<br>(for shifts)                                                                        |
|----------------------------|----------------------|---------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------|
| Duke Univ.                 | H. Gao (40%)         | 1 FTE <sup>*</sup><br>(50% )          | 1.5 FTE                    | 2 postdocs for shifts<br>4 grad students for shifts                                           |
| Mississippi State<br>Univ. | D. Dutta (50%)       | 1 postdoc<br>(50%)<br>located at JLab | 1 FTE                      | 2 faculty for shifts, 0.5 postdoc<br>3 grad students for shifts                               |
| Idaho State Univ.          | M. Khandaker (50%)   |                                       |                            |                                                                                               |
| NC A&T SU                  | A. Gasparian (75%)   | 1 postdoc (100%)                      | 0.5 FTE<br>(1 M.S. degree) | 1 Visiting Scientist<br>(5 months)                                                            |
| UVa                        | N. Liyanage (20%)    | 1 postdoc (75%)                       | 1 FTE                      | 1 postdoc and 1 grad student                                                                  |
| Argonne                    |                      |                                       |                            | 1 faculty for shifts (25%)<br>2 postdocs for shifts (50%)                                     |
| MIT                        | S. Kowalski          | 1 postdoc (50%)                       |                            | 1 faculty for shifts (25%)                                                                    |
| Hampton U.                 |                      |                                       |                            | 2 postdocs for shifts (25%)<br>2 grad students for shifts                                     |
| ITEP Moscow                |                      |                                       |                            | 1 visiting scientist (50%)                                                                    |
| TOTAL                      | 2.5 FTE              | 3.25 FTE                              | 4.0 FTE                    | 8 postdocs (~ 40%)<br>I faculty (50%)<br>10 grad students (50%)<br>1 visiting Scientist (50%) |

#### **PRad Collaboration Shift Taking Team**

30 people in the previous table: 24 shift taking users in the collaboration and 6 people as RC and expert problem solvers

Assuming 2 people per shift, 4 calendar weeks, 7 shifts/ person – adequate for continuous running

#### PRad Collaboration Analysis Team (students and PDs)

**Jefferson Laboratory** 

NC A&T State University (1 postdoc, 1 M.S. graduate student) Duke University (2 Ph.D. students, 1 postdoc) Mississippi State University (2 Ph.D. students, 0.5 postdoc) University of Virginia (1 Ph.D. student, postdoc)

Goals: (i) Preliminary results April APS meeting 2017 (ii) Final results: DNP meeting Fall 2017

#### PRad Experimental Setup in Hall B at JLab



- High resolution, large acceptance, hybrid HyCal calorimeter (PbWO<sub>4</sub> and Pb-Glass)
- Windowless H<sub>2</sub> gas flow target
- Simultaneous detection of elastic and Moller electrons

Spokespersons: A. Gasparian, D. Dutta, H. Gao, M. Khandaker

- Q<sup>2</sup> range of 2x10<sup>-4</sup> 0.14 GeV<sup>2</sup>
- XY veto counters replaced by GEM detector
- Vacuum box

#### The Proton Charge Radius

In the limit of first Born approximation the elastic *ep* scattering (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon}G_M^{p\,2}(Q^2)\right)$$

$$\epsilon^2 = 4EE'\sin^2\frac{\theta}{2}$$
  $\tau = \frac{Q^2}{4M_p^2}$   $\epsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$ 

Structure less ``proton":

Q

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

At very low  $Q^2$ , cross section dominated by  $G_{Ep}$ :

$$G^p_E(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

r.m.s. charge radius given by the slope:

$$\left< r^2 \right> = - \left. 6 \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0}$$

# Simultaneous detection of elastic and Moller electrons

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} G_E^{p\,2}(Q^2)$$

# Data Analysis Procedure

- Cluster reconstruction
- e-p and Møller separation
- Empty target subtraction
- Radiative corrections
- Events ratio correction
- Form factor extraction
- Extraction of the proton charge radius

- Reconstruction of clusters
  - Only e-p events with radiative corrections are shown here



- Center of gravity method is studied by simulation
  - 5 × 5 cluster, 1.1 GeV at x = 100 mm
  - Crystal module result is shown, lead glass module will have about 2 times of the resolution



• Energy calibration  $E = (E_{cluster} - 2.359 \text{ MeV})/0.91439$ 



 Resolution from simulation is consistent with HyCal behavior in PrimEx experiment

• 
$$\frac{\sigma E}{E} = \frac{2.6\%}{\sqrt{E/GeV}}, \ \sigma_x = \frac{2.5mm}{\sqrt{E/GeV}}$$



- GEM hits reconstruction
- With GEM, the reconstruction for HyCal can be further improved in the following way:
  - Reconstructed position of cluster -> find hits on GEM
  - Hits on GEM -> provide accurate information about the position of hits -> improve reconstruction on HyCal



Reconstructed Hits

Reconstructed Hits on HyCal

The reconstruction of 0.8 degree ring with only HyCal detector

#### HyCal and GEM detectors (frame + foils)



Energy vs. angle, reconstructed hits Reconstructed theta ring (0.8 degree)

#### **Events** separation

 In our kinematics, the Møller and ep events can be separated by a 2D cut



# **Events** separation

- In our kinematics, the Møller and ep elastic events can be separated by a 2D cut
  - Due to radiation effects, the two types of events cannot be perfectly separated, but this effect will be corrected during radiative corrections.



# **Empty target subtraction**

- An empty target run will be performed, and the events will be subtracted from production run.
- The subtraction minimizes the background from target cell structure and residual gas.



# **Empty target subtraction**

- Comparison between subtracted events and bare hydrogen target events:
  - 3 days of beam time, 20% beam time is for empty target run
  - uncertainty 0.06% ~ 0.5% for 12 angular bins from 0.8 degree to
    3.8 degree



### **Radiative corrections**

- External corrections
  - GEANT4 simulation, current geometry in code is shown below



### **Radiative corrections**

- Internal corrections
  - Event generators including radiation effects of e-p and e-e scattering were developed
  - For very low Q<sup>2</sup>, go beyond the ultra-relativistic approximation (URA, m<sup>2</sup> << Q<sup>2</sup>)



### **Radiative corrections**

- Different event generator to check the corrections
  - Developed by A. Gramolin
  - Lowest order QED radiative corrections
  - First order bremsstrahlung without soft-photon or ultra-relativistic approximations



### **Events ratio correction**

- e-p elastic cross sections are normalized to Møller cross sections
- Events distributions are different, so the acceptance ratio for each angluar bin will be affected by the resolution



#### **Events ratio correction**

- Mean value shift of the ratio can be corrected, uncertainty will propagate into determination of cross-sections
  - Results for a few bins are shown as example
  - Estimation of the uncertainty: 0.1 %  $\sim$  0.3 %



### Form factor extraction

• Rosenbluth formula

$$\sigma_{R} = \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{\sigma_{Mott}}{\epsilon}\frac{\tau}{1+\tau}\right) = \frac{\epsilon}{\tau}G_{E}^{p^{2}} + G_{M}^{p^{2}}$$

- At 1.1 GeV,  $\rm G_{M}$  contribution is 0.015%  $^{\sim}$  0.06%, can be neglected
- High Q<sup>2</sup> part at 2.2 GeV,  $G_E$  is still dominating,  $G_M$  contribution can be simply determined by existing data with a reasonable uncertainty

# **Extraction of proton radius**

• Rms proton charge radius, slope of G<sub>E</sub> at Q<sup>2</sup> close to 0

$$\frac{\langle r^2 \rangle}{6} = - \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0}$$

- The slope is extracted through fitting
  - Linear fit, polynomial fit, dipole fit and continuous fraction fit were tested with simulation data (dipole fit is shown)



#### **PRad Projected Result with world data**

