# **Studies of Radiative Corrections for the PRad-II Experiment**



### Haiyan Gao Duke University For the PRad Collaboration





PRad-II C1 review, March 12, 2021

### PRad-II C1 Review



### March 12, 2021





- Plan for blind analysis to extract the proton radius  $(r_p)$  for PRad-II
- Radiative correction (RC) studies for PRad
  - PRad's estimation of the RC systematic uncertainty of  $r_{\rho}$
  - Independent study of the RC systematic uncertainty of  $r_{\rho}$
- RC studies for PRad-II
  - Integrated Møller method
  - Plans for the next-to-next leading order (NNLO) calculations
  - Improvement from PRad to PRad-II
  - Partial testing of calculations of radiative effects
- Summary



### **Plan: Blind analysis for extraction of r<sub>p</sub> for PRad-II**



PRad-II C1 review, March 12, 2021

| RC studies | for PRad-II |
|------------|-------------|
|------------|-------------|

### **Plan: Blind analysis for extraction of r<sub>p</sub> for PRad-II**



PRad-II C1 review, March 12, 2021





# **PRad's estimation of the RC syst. uncertainty of** $r_p$

| Outline Plan for blind analysis for PRad-II | RC studies for PRad |
|---------------------------------------------|---------------------|
|---------------------------------------------|---------------------|

- Measured radius: *Nature* 575, 147 (2019)
  - $r_p = (0.831 \pm 0.007_{stat} \pm 0.012_{syst}) \text{ fm}$
- $r_p$  uncertainties for PRad shown in the table
  - Uncertainties estimated using • the rational (1,1) function

X. Yan et al. PRC 98, 025204 (2018)

Using rational (1,1)  
$$f(Q^2) = \frac{1+p_1Q^2}{1+p_2Q^2}$$

| Sta |
|-----|
| G   |

| Bea | an |
|-----|----|
| -   | E  |







PRad-II C1 review, March 12, 2021

### RC studies for PRad-II

| Item                    | PRad $\delta r_p$ [fm] |
|-------------------------|------------------------|
| Stat. uncertainty       | 0.0075                 |
| GEM efficiency          | 0.0042                 |
| Acceptance              | 0.0026                 |
| eam energy related      | 0.0022                 |
| Event selection         | 0.0070                 |
| HyCal response          | 0.0029                 |
| Beam background         | 0.0039                 |
| adiative correction     | 0.0069                 |
| Inelastic ep            | 0.0009                 |
| $_{I}$ parameterization | 0.0006                 |
| al syst. uncertainty    | 0.0115                 |
| Total uncertainty       | 0.0137                 |



| Outline |  |
|---------|--|
|---------|--|

- RCs one of the largest syst. uncertainty sources of  $r_p$  for PRad
  - RCs studied for both e-p and Møller scatterings
  - Event generator used, made using the results from *I. Akushevich et al, EPJA* **51**, 1 (2015)
    - Used analytical calculations for one-loop e-p and Møller RC diagrams Ο
    - Calculated within covariant formalism and beyond ultra-relativistic limit Ο
    - Infrared divergence extracted and cancelled by Bardin-Shumeiko approach Ο
  - PRad RC syst. uncertainty on  $r_{p}$  estimated
    - using the first-order RC results from EPJA 51, 1 (2015) Ο
    - using a method from A. Arbuzov and T. Kopylova, EPJC 75, 603 (2015) for estimation of the contribution stemming from higher order RCs
    - Estimated syst. uncertainties correlated and Q<sup>2</sup>-dependent lacksquare

RC studies for PRad-II



### **PRad's estimation of the RC syst. uncertainty of** $r_{p}$

Outline Plan for blind analysis for PRad-II

**RC** studies for PRad

• e-p and Møller NLO diagrams used for cross section calculations in EPJA 51, 1 (2015)



- Feynman diagrams contributing to the Born and RC cross sections in e+p elastic scattering:
  - (a) The Born process; (b) Vertex correction;
  - (c) Vacuum polarization; (d)-(e) Bremsstrahlung.
- Feynman diagrams contributing to the Born (a)-(b) and RC cross sections for Møller scattering:

(c)-(e) Vacuum polarization and vertex correction; (f)-(g) Box contribution; (h)-(k) Bremsstrahlung.

PRad-II C1 review, March 12, 2021



RC studies for PRad-II



### **PRad's estimation of the RC syst. uncertainty of** $r_p$

| Outline | Plan for blind analysis for PRad-II | RC studies for PRad |
|---------|-------------------------------------|---------------------|
|         |                                     |                     |

- Two methods for forming e-p to e-e differential cross section ratio (luminosity) cancellation)
  - Bin-by-bin method
    - Forms the ratio using the e-p and e-e counts from the same angular bin Ο Cancels out the energy-independent part of acceptance and GEM efficiency Ο Q<sup>2</sup>-dependent syst. uncertainties from the e-e process introduced 0
  - Integrated Møller method
    - Uses e-e counts from a selected angular range
    - Gives a common normalization factor for all e-p  $Q^2$  bins; no effect on extracted  $r_p$ Ο Not applied to all Q<sup>2</sup> bins in PRad, since the GEM efficiency not precisely
    - Ο determined in all those bins

Q<sup>2</sup>-dependence much larger for Møller RC in PRad

- Affects the cross-section results via the use of the bin-by-bin method lacksquare
- For e-p RC  $\rightarrow \delta r_p = 0.0020 \text{ fm}$ ; for Møller RC  $\rightarrow \delta r_p = 0.0065 \text{ fm}$ ullet
- For total RC  $\rightarrow \delta r_{p} = 0.0069 \ fm$ ullet

PRad-II C1 review, March 12, 2021

**RC** studies for PRad-II



| Outline | Plan for blind analysis for PRad-II  | RC studies for PRad |
|---------|--------------------------------------|---------------------|
| Outime  | FIAITION DIITU ANALYSIS IOI FILAU-II |                     |

- Independent study performed for the second-order RC effect on  $r_p$ 
  - Followed the approach of A. Aleksejevs et al, Physics of Atomic Nuclei, 76, 888 (2013)
    - Paper calculated two-loop radiative effects in the MOLLER experiment 0
  - Based on its mathematical framework and for PRad kinematics
    - Contribution from NNLO diagrams on the Born cross section estimated 0
    - For any reasonable photon energy cut for the PRad experiment Ο
    - $Q^2$ -dependent syst. uncertainties smaller than that estimated in the first approach Ο
    - The largest RC syst. uncertainty computed:  $\delta r_{p} = 0.0047 \text{ fm}$ 0
  - However, approximated methods and restricted number of diagrams used Improved and exact NNLO calculations are much desired

RC studies for PRad-II



| Outline | Plan for blind analysis for PRad-II | RC studies for PRac |
|---------|-------------------------------------|---------------------|
|         |                                     |                     |

- Limitations of GEM efficiency determination in PRad
  - Contributed indirectly to the total syst. uncertainty
  - Should be improved
- Aiming at a significantly better precision in PRad-II compared with PRad
  - Employ two planes of coordinate tracking detectors
  - Achieve a precise measurement of tracking detector efficiency (~ 0.1% level)
  - Reduce various backgrounds
  - Use the integrated Møller method for all angular bins
  - Suppress the Q<sup>2</sup>-dependent syst. uncertainties
  - Turn all the Møller syst. uncertainties into cross section normalization uncertainties
  - $\delta r_p$  from RCs will be reduced from 0.0069 fm to 0.0015 fm

PRad-II C1 review, March 12, 2021



### **RC** studies for PRad-II



### **Plans for the NNLO calculations**

Outline Plan for blind analysis for PRad-II **RC** studies for PRad

- To achieve the PRad-II goal of total syst. uncertainty of 0.0032 fm
  - Very necessary also to perform improved NNLO RC calculations
  - Plans in place by the PRad Collaboration's theory colleagues
  - Leading investigator Dr. Stanislav Srednyak in close collaboration with Drs. Igor Akushevich and Alexander Ilyichev
  - Contacts/potential collaborations with the PSI and Mainz groups on the subject matter established
- Advantages and disadvantages of the original paper EPJA 51, 1 (2015)
  - Advantages
    - Both e-p and e-e treated in the same approach Ο
    - First-order diagrams calculated analytically Ο
    - Dependence on the electron mass kept, accurate in  $O(\alpha)$ Ο
  - Disadvantages (indicated by Andrej Arbuzov at First TPC Collaboration Meeting in Mainz)
    - Improper treatment of higher-order effects Ο
    - No two-photon exchange, no hadronic vacuum polarization (PRad simulation) Ο included TPE effect)
    - No radiation off proton and up-down interference, Ο

PRad-II C1 review, March 12, 2021

**RC** studies for PRad-II



| Outline | Plan for blind analysis for PRad-II | RC studies for PRad |
|---------|-------------------------------------|---------------------|
|         |                                     |                     |

- Submitted proposal to DOE by Akushevich (PI) and Gao (co-PI) on NNLO RC calculations for PRad-II (under review)
- Need to accomplish the following tasks
  - Calculation of NNLO contributions to e-p and Møller scattering diagrams by the end of 2022 (proposed plan in the DOE proposal)
    - Focus on mathematical approach of Gelfand-Kapranov-Zelevinsky 0
    - Develop the so-called Gamma series method Ο
    - Calculate one- and two-loop integrals with the new method
  - Obtain all necessary results by the end of 2024
    - Evaluate also the two-photon exchange part to hadronic corrections Ο
    - Make a new MC event generator or update the current one (working with PRad) Ο
    - Finalize the project (working with PRad)

PRad-II C1 review, March 12, 2021



**RC** studies for PRad-II



### Improvement from PRad to PRad-II

| Outline | Plan for blind analysis for PRad-II                                                                  | RC studies for PRad       |     |
|---------|------------------------------------------------------------------------------------------------------|---------------------------|-----|
| • Imp   | provement of the RC associat                                                                         | ed syst. uncertaint       | У   |
|         | • Black spectrum $\rightarrow$ RC $\delta r_{\rho}$ for                                              | r PRad                    |     |
|         | • Red spectrum $\rightarrow$ projected F<br>$\delta r_{p}$ with two planes of coordination           | C st 800 ate              | P   |
|         | tracking detectors plus curren<br>RC calculations                                                    | t ooo                     |     |
|         | • Blue spectrum $\rightarrow$ projected l                                                            |                           |     |
|         | $\delta r_p$ with two planes of coordinate tracking detectors plus improving RC calculations at NNLO | ate<br>ved <sup>200</sup> | R   |
|         |                                                                                                      | 0<br>0.810 0.             | .81 |

- Outline of the current project presented
  - Whitepaper on Radiative Corrections: *arXiv:2012.09970 [nucl-th]* ullet
  - Synergy with ongoing RC-related studies for the JLab SoLID SIDIS and the planned ulletstudies for the proposed DRad experiment

PRad-II C1 review, March 12, 2021







### Improvement from PRad to PRad-II

| Outline | e Plan for blind analysis fo | Plan for blind analysis for PRad-II RO |      | C studies for PRad          |  |
|---------|------------------------------|----------------------------------------|------|-----------------------------|--|
|         |                              |                                        |      |                             |  |
|         | Item                         | PRad δr <sub>p</sub>                   | [fm] | PRad-ll δr <sub>p</sub> [fm |  |
|         | Stat. uncertainty            | 0.007                                  | 5    | 0.0017                      |  |
|         | GEM efficiency               | 0.0042                                 | 2    | 0.0008                      |  |
|         | Acceptance                   | 0.002                                  | 5    | 0.0002                      |  |
|         | Beam energy<br>related       | 0.0022                                 |      | 0.0002                      |  |
|         | Event selection              | 0.0070                                 | C    | 0.0027                      |  |
|         | HyCal response               | 0.0029                                 | 9    | Negligible                  |  |
|         | Beam background              | 0.0039                                 |      | 0.0016                      |  |
|         | Radiative correction         | 0.0069                                 |      | 0.0004                      |  |
|         | Inelastic ep                 | 0.000                                  | 9    | Negligible                  |  |
|         | $G^p_M$ parameterization     | 0.000                                  | 6    | 0.0005                      |  |
|         | Total syst. uncertainty      | 0.011                                  | 5    | 0.0032                      |  |
|         | Total uncertainty 0.01       |                                        | 7    | 0.0036                      |  |
|         |                              |                                        |      |                             |  |

PRad-II C1 review, March 12, 2021

A factor of 3.8 improvement !

### RC studies for PRad-II

Summary

### **Result of**

More beam time and higher DAQ rate

2nd tracking detector

2nd tracking detector

2nd tracking detector

2nd tracking + HyCal upgrade

HyCal upgrade

Better vacuum 2nd halo blocker vertex res. (2nd tracking)

Improved calc.

**Upgraded HyCal** 



# **Can we test (partially) calculations of radiative effects?**

| Outline | Plan for blind analysis for PRad-II   | RC studies for PRad |
|---------|---------------------------------------|---------------------|
|         | , , , , , , , , , , , , , , , , , , , |                     |

- Validate (partially) calculations of radiative effects by PRad-II data
- PRad-II will be significantly improved compared with PRad
  - Two planes of tracking detectors and upgraded HyCal detector
  - Excellent PID between electrons and photons
  - Simultaneously detection of scattered electrons and "hard" radiative photons.
  - Better resolution for low energy photons with all crystal HyCal
  - Higher statistics to check photon distributions vs. their opening angles and energies
- Limitations in PRad
  - GEM efficiency limited knowledge
  - HyCal lead-glass low resolution lacksquare
  - Inability to determine cross sections with "hard" photon emissions with precision due to poor statistics

PRad-II C1 review, March 12, 2021

**RC** studies for PRad-II



# Can we test (partially) calculations of radiative effects?

Outline

Plan for blind analysis for PRad-II

RC studies for PRad

- Study with the PRad Møller data
  - Symmetric single-arm Møller events from the PRad 2.2 GeV data
  - Select "hard" radiative photon with  $E_{\nu} > 35$  MeV (limited by HyCal resolution) ullet
  - "Hard" radiative process dominating the cross sections at low scattering energy ullet



PRad-II C1 review, March 12, 2021

**RC studies for PRad-II** 



- For PRad-II, we plan for blind analyses to reduce possible bias coming from normalization and  $Q^2$ -dependence of the form factors
- In PRad, the RCs found as the second largest syst. uncertainty source for  $r_{p}$ 
  - Estimated also by an independent study with another method
- Achieve a substantially better precision in PRad-II compared to PRad
  - Employ two planes of coordinate detectors to improve the detector efficiency
  - Apply the integrated Møller method to all angular bins
  - Suppress the Møller Q<sup>2</sup>-dependent syst. uncertainties
  - Accomplish improved NNLO calculations for e-p and Møller scatterings
  - Experimental (partial) validation of calculations of radiative effects



| Outline | Plan for blind analysis for PRad-II | RC studies for PRad |
|---------|-------------------------------------|---------------------|
| Outline | Plan for blind analysis for PRad-II | RC studies for PRad |

# Backup slides

PRad-II C1 review, March 12, 2021

### RC studies for PRad-II



| Outime Flam for Dimu analysis for Finau-in The Studies for Finau |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

To reduce the systematic uncertainty, the ep cross section is normalized to the Møller  $\bullet$ cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ep} = \left[\frac{N_{\mathrm{exp}}(ep \to ep \text{ in } \theta_i \pm \Delta\theta)}{N_{\mathrm{exp}}(ee \to ee)} \cdot \frac{\varepsilon_{\mathrm{geom}}^{ee}}{\varepsilon_{\mathrm{geom}}^{ep}} \cdot \frac{\varepsilon_{\mathrm{det}}^{ee}}{\varepsilon_{\mathrm{det}}^{ep}}\right] \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ee}$$

- Method 1: bin-by-bin method taking e-p/e-e counts from the same angular bin > Cancellation of energy independent part of the efficiency and acceptance Limited coverage due to double-arm Møller acceptance
- Method 2: integrated Møller method integrate Møller in a fixed angular range and use it as common normalization for all angular bins
  - > Needs to know the GEM efficiency well

RC studies for PRad-II



| es for PRad |
|-------------|
| es          |

- Luminosity cancelled from both methods  $\bullet$
- PRad: Bin-by-bin range: 0.7° to 1.6° for 2.2 GeV, 0.75° to 3.0° for 1.1 GeV. Larger angles  $\bullet$ use integrated Møller method (3.0° to 7.0° for 1.1 GeV; 1.6° to 7.0° for 2.2 GeV)
- PRad-II: two planes of GEM/ $\mu$ R well allow for *integrated Møller method* for the entire  $\bullet$ experiment
- Event generators for unpolarized elastic ep and Møller scatterings have been developed  $\bullet$ based on complete calculations of radiative corrections – *PRad-II with NNL for RC* 
  - 1. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
  - 2. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (beyond ultra relativistic approximation)
- A Geant4 simulation package is used to study the radiative effects, and an iterative procedure applied

$$\sigma_{ep}^{Born(exp)} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{exp} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{sim} \cdot \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{Borr}$$

PRad-II C1 review, March 12, 2021

**RC** studies for PRad-II

Summary

n(model)

 $\cdot \, \sigma_{ee}^{\textit{Born(model)}}$ 



### **Two-photon Exchange**

| Outline | Plan for blind analysis for PRad-II | RC studies for PRad |
|---------|-------------------------------------|---------------------|
|         |                                     |                     |





# RC studies for PRad-II Summary PRad max $Q^2$ 10<sup>-2</sup> $10^{-1}$ $Q^2$

