Collimator Simulation

- 1 foot long, Nickel, ID: 4.8 mm, 6.4 mm, 8.6 mm
- Upstream of target cell

Previous simulation

- Gaussian shape halo, conservative assumption: 1.2 mm
- Cell: 24 mm diameter, 4 mm aperture
- Triggered events for cell only: 17 (207 hits) over 10.67 sec, rates: 1.7

Simulation result

- ID: 4.8 mm , halo electrons 10^{7} (10.67 sec)
- Trigger: Energy sum > 500 MeV (for 1.1 GeV beam)
- Triggered events: 1726 , rates: 167.8 Hz

Reconstructed Hits

Reconstructed Hits on HyCal

Simulation result

- ID: 6.4 mm , halo electrons 10^{7} (10.67 sec)
- Trigger: Energy sum > 500 MeV (for 1.1 GeV beam)
- Triggered events: 721, rates: 67.6 Hz

Reconstructed Hits

Reconstructed Hits on HyCal

Simulation result

- ID: 8.6 mm , halo electrons 10^{7} (10.67 sec)
- Trigger: Energy sum > 500 MeV (for 1.1 GeV beam)
- Triggered events: 116, rates: 10.9 Hz

Reconstructed Hits

Reconstructed Hits on HyCal

Simulation result

- ID: 12.7 mm , halo electrons 10^{7} (10.67 sec)
- Trigger: Energy sum > 500 MeV (for 1.1 GeV beam)
- Triggered events: 14 , rates: 1.3 Hz

Reconstructed Hits

Reconstructed Hits on HyCal

Uniform Halo

- For 12.7 mm , there is nothing because the opening is too large to be hit by the Gaussian shape halo
- Assuming there is also a uniform halo, event rates 65.8 Hz (cell only)

Simulation result

- ID: 4.8 mm , halo electrons 10^{6} (1.067 sec) , uniform halo
- Trigger: Energy sum > 500 MeV (for 1.1 GeV beam)
- Triggered events: 10433, rates 10 kHz

Reconstructed Hits

Reconstructed Hits on HyCal

Simulation result

- Two collimators in a row

Simulation result

- ID: $12.7 \mathrm{~mm}+4.8 \mathrm{~mm}$, halo electrons $10^{6}(1.067 \mathrm{sec})$, uniform halo
- Trigger: Energy sum > 500 MeV (for 1.1 GeV beam)
- Triggered events: 8262, rates 7.7 kHz

Reconstructed Hits

Reconstructed Hits on HyCal

Summary

- The collimator which has a small enough opening to block the Gaussian shape halo ($4.6 \mathrm{~mm}, 6.4 \mathrm{~mm}, 8.6 \mathrm{~mm}$) increases the background level
- The case is very bad if there is a uniform halo with high energy (assumed to be as same as the beam energy in the simultion)
- It is not suggested to use the collimator based on the simulation, or at least to make the collimator removable

