Short summary to small angle background simulation

setup

All dimension follow real setup

Collimator in experiment

Collimator in PRad

Target Setup

Residue gas density distribution

Beam halo profile

Table 1: Profile parameters obtained by fitting the data to the sum of two Gaussian functions with a common mean for all the scans.

	scan1	scan2 (Fig. 6)	scan3 (Fig 4)	scan3-X plate (Fig 5)	scan4
Date	Dec. 5 17:09	Dec. 9 14:45	Dec. 9 14:51	Dec. 9 14:51	Dec. 10 18:22
$\sigma_{core}[X](mm)$	0.045	0.053	0.052	0.052	0.106
$\sigma_{halo}[X](mm)$	0.380	0.470	0.494	0.476	0.656
$\sigma_{core}[Y](mm)$	0.104	0.111	0.110		0.085
$\sigma_{halo}[Y](mm)$	0.949	0.855	0.771		0.617
$\frac{A_{halo}}{A_{core}}[X]$	$4.2*10^{-5}$	$1.1 * 10^{-5}$	$8.0*10^{-6}$	$7.3 * 10^{-6}$	$3*10^{-4}$
$\frac{A_{halo}}{A_{core}}[Y]$	$1.3*10^{-5}$	$4.8 * 10^{-6}$	$5.8 * 10^{-6}$		$<7*10^{-5}$
Motor Speed	0.250mm/sec	0.250mm/sec	0.125mm/sec	0.125mm/sec	1.5mm/sec
Wires	25μm/1mm	25μm/1mm	25μm/1mm	25μ m/1x10mm ² plate	50μm

e-p yield from collimator and residue gas

Only collimator, no residue gas

Only residue gas, no collimator

Collimator in experiment

- Red: from simulation, target at 0, for compare
- Light blue: from experimental data, empty target run
- Blue: from simulation, with collimator, residue gas

e-p yield with collimator and residue gas

Roughly scaled by beam flux according to beam halo profile

Previous simulation results

- Residue gas in combination with beam pipe will only have effect on the slope of the background yield line, no bump
- Bump due to a sharp peak at around 1.6m upstream, which is the same location where collimator ends.

Target Setup

- Different residue gas distribution will lead to different ep yield line (shape change).
- Against residue gas distribution range

Residue gas density distribution

Shape compare for residue gas

- The longer residue gas distribution, the more change in ep yield shape
- In simulation, (-1.2 m, 0 m) residue gas distribution agrees most with experimental data

Collimator in experiment

$$k1 = -3.144$$

 $k2 = -3.746$

Slope relative change: 19%

Compare between experimental data and simulation

pol2 fitting for both