Short summary to small angle background simulation

setup

All dimension follow real setup

Collimator in experiment

Collimator
~1.6m to target

Collimator in PRad

Target Setup

Beam halo

Beam halo profile

Table 1: Profile parameters obtained by fitting the data to the sum of two Gaussian functions with a common mean for all the scans

	scan1	scan2 (Fig. 6)	scan3 (Fig 4)	scan3-X plate (Fig 5)	scan4
Date	Dec. 5 17:09	Dec. 9 14:45	Dec. 9 14:51	Dec. 9 14:51	Dec. 10 18:22
$\sigma_{\text {core }}[\mathrm{X}](\mathrm{mm})$	0.045	0.053	0.052	0.052	0.106
$\sigma_{\text {halo }}[\mathrm{X}](\mathrm{mm})$	0.380	0.470	0.494	0.476	0.656
$\sigma_{\text {core }}[\mathrm{Y}](\mathrm{mm})$	0.104	0.111	0.110		0.085
$\sigma_{\text {halo }}[\mathrm{Y}](\mathrm{mm})$	0.949	0.855	0.771		0.617
$\frac{A_{\text {halo }}[\mathrm{X}]}{A_{\text {core }}}[$	$4.2 * 10^{-5}$	$1.1 * 10^{-5}$	$8.0 * 10^{-6}$	$7.3 * 10^{-6}$	$3 * 10^{-4}$
$\frac{A_{\text {halo }}}{A_{\text {core }}}[\mathrm{Y}]$	$1.3 * 10^{-5}$	$4.8 * 10^{-6}$	$5.8 * 10^{-6}$		$<7 * 10^{-5}$
Motor Speed	$0.250 \mathrm{~mm} / \mathrm{sec}$	$0.250 \mathrm{~mm} / \mathrm{sec}$	$0.125 \mathrm{~mm} / \mathrm{sec}$	$0.125 \mathrm{~mm} / \mathrm{sec}$	$1.5 \mathrm{~mm} / \mathrm{sec}$
Wires	$25 \mu \mathrm{~m} / 1 \mathrm{~mm}$	$25 \mu \mathrm{~m} / 1 \mathrm{~mm}$	$25 \mu \mathrm{~m} / 1 \mathrm{~mm}$	$25 \mu \mathrm{~m} / 1 \mathrm{x} 10 \mathrm{~mm}^{2}$ plate	$50 \mu \mathrm{~m}$

[Ref: A. P. Freyberger, large dynamic range beam profile measurements]

e-p yield from collimator and residue gas

Only collimator, no residue gas

Only residue gas, no collimator

Collimator in experiment

- Red: from simulation, target at 0 , for compare
- Light blue: from experimental data, empty target run
- Blue: from simulation, with collimator, residue gas

e-p yield with collimator and residue gas

Roughly scaled by beam flux according to beam halo profile

Previous simulation results

- Residue gas in combination with beam pipe will only have effect on the slope of the background yield line, no bump
- Bump due to a sharp peak at around 1.6 m upstream, which is the same location where collimator ends.

Target Setup

- Different residue gas distribution will lead to different ep yield line (shape change).
- Against residue gas distribution range

Shape compare for residue gas

- The longer residue gas distribution, the more change in ep yield shape
- In simulation, ($-1.2 \mathrm{~m}, 0 \mathrm{~m}$) residue gas distribution agrees most with experimental data

Collimator in experiment

poll fitting for residue gas

pol2 fitting for residue gas

$\mathrm{kl}=-3.144$
$\mathrm{k} 2=-3.746$

Slope relative change: 19\%

Compare between experimental data and simulation

