Cosmic removal

- Cosmic removed data from Duke group
- Ep yield before and after cosmic removal

data loss $=\frac{\# \text { of cosmic events }}{\text { total events }}$

Cosmic removal

- Cosmic removed data from Duke group
- Efficiency compare before and after cosmic removal

data loss $=\frac{\# \text { of cosmic events }}{\text { total events }}$

Old cut

- Remove all events for which any part of the search circle falls out side the active area of the GEM, within 5 mm of a spacer or within the area of a broken strip.
- Remove all noisy events from the calculation when the noisy chamber goes in the
denominator.

X plane hit distribution for GEM1 chamber

h_hit_gem1x

Completely no hits on this strip, probably have some soldering problem at Panasonic connectors, this strip was not connected

X plane hit distribution for GEM1 chamber

HV sector dead area cut
hee_gem1

Overlap GEM coordinates check

h_gem_overlap_diff_y_ep

$y_{\text {gem1 }}-y_{\text {gem } 2}(m m)$

2 GeV beam

Overlap GEM coordinates check

1 GeV beam

Overlap area GEM ep efficiency 2 GeV beam

- GEM efficiency > 90\%, for each HyCal cluster, chances for that both GEM chambers have no match <1\%
- So require each HyCal cluster has at least 1 GEM match, for better theta reconstruction (gem/gem method).
- Discard events that both GEM chambers have no match

Overall area GEM ep efficiency

1 GeV beam compare with 2 GeV beam

Overall area GEM ep efficiency

6 sigma matching radius compare with 10 sigma matching radius

Next steps for efficiency:

1) estimate accidentals on efficiency in overlapping area
2) different dead area (spacers, broken strips, HV sectors) cut size effect on efficiency 3)
