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What's to know?

Name Statistic

k 2
X — 11
chi-squared distribution Z L

=1

0

Just fit until you get x? /v =1 and your good? Right.... ?!

(where v is the degrees of freedom in the fit N—j-1)

What could possibly go wrong?!

What if the weights (sigma’s) are underestimated or overestimated?
What if | have the wrong model?
What if the data aren’t normally distributed?
What if average redcued ¥? is good, but one over-fits one area and under-fits another!!
(Itis NOT as trivial and just getting a reduced x> ~ 1 does NOT mean you have a good result. )
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Highlighted Resources

 Particle Data Handbook — Statistics Section
— http://pdq.Ibl.gov/2015/reviews/rop2015-rev-statistics.pdf

The Interpretation of Errors — Fredrick James

— http.//seal.cern.ch/documents/minuit/mnerror.pdf

Data Analysis Textbooks

— Data Reduction and Error Analysis — Philip Bevington

— Statistical Methods in Experimental Physics — Fredrick James
— Computation Methods for the Physical Science — Simon Sirca
— Probability of Physics — Simon Sirca

R Programing Language

— https://www.r-project.org/

Estimation

- Street-Fighting Mathematics — Sanjoy Mahajan
— Guesstimation — Larry Weinstein
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All Models Are Wrong

“The most that can be expected from any model is that it can supply
a useful approximation to reality: All models are wrong; some
models are useful.” - George Box (1919 — 2013)

“An ever increasing amount of computational
work is being relegated to computers, and often H§

| Simon Sirca
' Martin Horvat

we almost blindly assume that the obtained .
results are correct.” Computational

- Simon Sirca & Martin Horvat ME'[hO.dS for
Physicists

Compendium for Students
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Some Wrong But Useful Models

 F=ma ... but what about the friction
« pV=nRT ... but what about Van der Waals
e F =KkxX ... but what about the elongation

« y=a, +a,x ... but what about a,x?, a;x>, etc.
—sin(B) forsmall© =6
— cos(B) for small 6 = 1
—tan(0) for small angles goes to zero.
—tan(0) for large angle goes to infinity.
* And of course the spherical cows...
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Charge Radius of the Proton

* Proton G¢ has no measured diffractive minima and it is too light for the
Fourier transformation to work in any kind of model independent way.
— Jim Kelly, Phys.Rev. C66 (2002) 065203.

« Thus for the proton we make use of the theorem that as Q2 goes to zero
the charge radius is equal to the slope of G¢

( 2)_1_|_Z <2n>Q2n

For small Q? ( < 1 fm2), the higher order terms, ~ Q?"/(2n+1)!, become less important.

1/2
dG g (Q?
rp =/ (r?) = | —6 dEQ(Q )

Q?=0

i.e. Experimentalists are trying to determine the slope of G; as Q° goes to zero.
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Measurement Is Often A Goldilocks Problem

From Deep Space From Orbit On The Planet

Ruler & Some Geometry Theodolite”

,Jefferson Lab




What is just right for the proton?!

- We use Plank’s constant one to relate energy " ’)

to length in natural units:
— Q2 of 1 GeV2 = 25.7 fm=2.
» Radius of the proton is ~ 0.84 - 0.88 fm G

« Thus one can immediately guesstimate that
with electron scattering one needs:
— Q2 <(1/0.88 fm)? < 1.2 fm2 to get the radius of the
proton.

— Q2> 1.2 fm to understand the details of the edge of
the proton ( e.g. a pion cloud, CQCBM, etc. )

— Q2 >> 1.2 fm2 to understand transition from hadronic
to partonic ( e.g. the bound light constitute quarks )

Guesstimation books by Larry Weinstein (ODU)

Qefferson Lab




Test of Additional Term

(alpha 0.05) A textbook statistics problem is to quantify when to

. - : Data

4|1 stopadding terms to a fit of experimental data. | Hﬂummn L

t | 1614 . . . . . . /

: [»s One way to do this is with an F-distribution test. ol

: ;Z : forth Physezl Smygcnx

6 5.99 2( . ) 2( )

7 5.59 —_— —_

3| = (N —j—1) |

| *(J)

: 2 :: ?‘: X ‘_7 Frederick James

13 4.67

14 4.60 . . . . . Statistical Methods in

“ ke an where j is the order of the fit and N the number points being fit. Ersinadre

7| 44 :

:: . j‘:l Table 10.2. Maximum degree needed in polynomial approximation

201 435 .

Rt [ wn-j-1 2 3l a6 g | o R e —

A Reject 7% order to 95%

25 42 confidence level if F

2 | oam is smaller than 185 1 A0.1 7Tkl 6il 53l 7 eato AR Hlo

28 1 4.0

=] Probablllty
0 . 308 Quantifies a statement that adding a term doesn’t significantly improve the fit. for

@ | o ' o o . N Physicists
o ' ‘1:; One is free to pick a different alpha, alpha=0.05 is just typical to prevent over-fitting.

&) Springer

(see James 2" edition page 282, Bevington 3™ edition page 207, or Sirca page 95)
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Ge

FQ) = maGp(@) a1+ i@ ) 2
i=1 24

092 094 09 0.98

0.90

Simple Example

G. G. Simon, C. Schmitt, F. Borkowski, and V. H. Walther, Nucl. Phys. A333 (1980) 381.
J. J. Murphy, Y. M. Shin, and D. M. Skopik, Phys. Rev. C9 (1974) 2125.

2

X /v

I I I I I I
02 03 04 05 06 0.7

Q? [fm™4]

J X al as
2 13.71 0.623 1.002(2) —0.119(4)
3 13.71 0.652 1.002(5) —0.120(20) 0.00(2)
o —
S _
o
0 T 0]
o
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— o
© A
S
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& 3
h'd o I
To)
o
o A
<

02 03

04 05 06 0.7 038

Q% [fm™?]

F-test rejects fitting with the more complex j=3 function, that does NOT mean a, = 0.
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F-Test Is Not An Acceptance Test

For a more complex example, F-Test will reject the j=7 fit, but you then need to examine the fits
that weren’t rejected. This is not an acceptance test!

N j x> XxX/v no ai az as a4 as

77 5 49.57 0.688 0.991(2) —0.113(1) 0.88(1)-10"% —0.44(2)-10"% 9.7(8)-10~°

77 6 41.34 0.582 0.996(2) —0.121(1) 1.25(1)-1072% —1.14(2)-10"% 6.8(1)-107° —1.62(7)-10"°

77 7 41.32 0.590 0.995(3) —0.119(1) 1.18(1)-1072 —0.93(2)-10"% 3.9(1)-107° 0.12(6)-107° —4.2(5)-107"

ae

F(Q) = noGr(Q*) = no <1 + Zaz@%) g
=1 0
< 0.75

| find it interesting to note that the a; term
between j=5 and j=6 bounds the Muonic
Lamb shift result (i.e. 0.84fm ->a, of -0.1176)  0-5

Maclaurin Fit (j=5)

Dipole Fit (j=2)
Note you can get 0.88 from this same databy 025 [ rads Approximant (N=v=1
simply going higher order. (i.e. a battle of
claims of under-fitting vs. over-fitting)  Maclaurin Fit (1=6)

\
0 10 20

Q? [fm™]

In fact, it is clear from our knowledge of G; than none of these power series fits extrapolate correctly.

( for details see Phys. Rev. C 93 (2016) 055207 )
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Pade Approximant & Continued Fractions

Pade’ Approximant

When it exists, the Pade’ approximant (N,M) of a
Tayler series is unique.

1 2 M % M
ap+ a;xt+a,x?...+aM*x

f(x) =
1 +byxt+b,x?...+bN*xN

In our case we want f(x) = ny G¢(Q?), so

1+ a,Q,+a,Q%...+aM2* QV™

f(x) =n
° +b, Q,+b,Q%... + bN"2 * xN*2

( Henri Padé ~ 1860 )

Continued Fraction

C1

02
1+ Pz
C4Q2
1+...

f(Q%) =

1+

( Ancient Greeks )

Further reading: Extrapolation algorithms and Padé approximations: a historical survey
C. Brezinski, Applied Numerical Mathematics 20 (1996) 299.
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Residuals vs. Fitted Values

Examples taken from http://data.library.virginia.edu/diagnostic-plots/

Case 1
Residuals vs Fitted
N —
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Residuals

Case 2
Residuals vs Fitted
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Fitted values

Am | fitting with a reasonable model to describe the data?
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Normal Q-Q Plots

Examples taken from http://data.library.virginia.edu/diagnostic-plots/

(also see http://data.library.virginia.edu/understanding-g-g-plots/ )

Case 1 Case 2
Normal Q-Q Normal Q-Q
— o O
‘0 ‘0 O
o o - @ o)
o) . &N T
@ @
| - [P N
© - A
© ©
e o - =
g & e
s Y N
038 - —0
1 | | 1 w | | | 1 1
-2 -1 0 1 2 -2 -1 0 1 2
Theoretical Quantiles Theoretical Quantiles

Are the data normally distributed?
( a requirement for many of the other stat. tests to be valid! )
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Residuals vs. Leverage

Examples taken from http://data.library.virginia.edu/diagnostic-plots/

Case 1 Case 2
Residuals vs Leverage Residuals vs Leverage
qY] 49¢
w o8 D qQ 0 -
S - 2, 9. & 0 g
2 g2 o JI ks
o o ; % ]@vj‘:s*;o o 0
D B Y - o5 ® 030 !
N -— -~ “/ N 0.
s oBR ©
= “ 0 . ~ <3
g C}‘ ~ O 432 810 g -
: ; : 05
n & b Rl *
R Cook'sdistance o ©10 Cook's distance
' 1 i T T T 1
0.00 0.02 0.04 0.06 0.00 0.10 0.20 0.30
Leverage Leverage

Is a single data point dramatically influencing the fit?
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R Programming Language

2015 2014
Language Rank Types Spectrum Ranking Spectrum Ranking
1. Java &0 100.0 100.0
2. C 0L % 998 99.3
3. C++ 0L % 994 95.5
4. Python & 96.5 93.5
5. C# & 0L 91.3 92.4
6. R = 84.8 84.8
7. PHP &3 84.5 \ 845
8. JavaScript & [ 83.0 ’, 78.9
9. Ruby & O 76.2 74.3
10. Matlab = 72.4 72.8

IEEE Rankings are based mostly on CPU usage (i.e. big data)
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Stepwise Regression of G¢

from Carl & Keith

Start: AIC=36.77
datas$y ~ datas$x 1 | : ‘ ‘ ‘
© Df Sum of Sq  RSS  AIC 0.99 L Linear Fit (a.k.a. The Ruler) —— |
lo> + I(data$x”4) 1 10.3725 358.06 29.236 ' . .
o + I(data$x*3) 1  10.2911 358.14 29.312 0.98 L Stepwise Regression —— |
+ I(data$x”5) 1 10.2718 358.16 29.330 .
+ I(data$x”6) 1 10.0519 358.38 29.535 0 97 B a
(o] + I(data$x”2) 1 9.9568 358.48 29.624 '
o + I(data$x~7) 1  9.7627 358.67 29.804 0.96 - |
o + I(data$x~8) 1 9.4401 359.00 30.105 .
i + I(data$x*9) 1  9.1075 359.33 30.414 W 0.95 - |
O <t + I(data$x~10) 1  8.7790 359.66 30.719 O '
o + I(data$x~11) 1  8.4620 359.97 31.013 0.94 - a
o <none> 368.44 36.774 '
o~ Step: AIC=29.24 093 N
C? ] datas$y ~ datas$x + I(data$x”4) 0.92 L |
o Df Sum of Sq RSS AIC 091 L
<none> 358.06 29.236 '
+ I(data$x”2) 1 0.0088531 358.05 31.228 0 9 | | | | | |
T T T T T T T T + I(data$x~3) 1 0.0028516 358.06 31.233 '
01 02 03 04 05 06 07 08 N %Egaia:xg}) 1 g'ggggg; ggg'gg 31532 0 01 02 03 04 05 06 07 08
+ atagx”® . . .
) ) ) - ) ) ) ) + I(data$x”6) 1 0.0004668 358.06 31.236 2 f -2
+ I(data$x”7) 1 0.0003015 358.06 31.236 Q [ m ]
QZ [fm—Z] + I(data$x~10) 1 0.0001705 358.06 31.236
+ I(data$x”8) 1 0.0001061 358.06 31.236
+ I(data$x”9) 1 0.0000000 358.06 31.236
Akaike Information Criterion Selected Model
Call:
lm(formula = datas$y ~ data$x + I(data$x~4), weights = 1/datas$dy”2)
Weighted Residuals:
Min 1Q Median 3Q Max
-3.02110 -0.73469 -0.08639 0.66588 3.08298
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) ©0.9988419 0.0003534 2826.253 < 2e-16 xxkx
datas$x -0.1172672 0.0010936 -107.229 < 2e-16 *x*x*
I(data$x~4) 0.0063583 0.0020534 3.097 0.00213 xx
Signif. codes: @ ‘“kkkx’ 0.001 ‘*x’ 0.01 ‘x’ .05 ‘.’ 0.1 * ' 1

Residual standard error:
Multiple R-squared: ©.9932,
F-statistic:

O'REILLY"

Faud Tovtor

1.04 on 331 degrees of freedom
Adjusted R-squared:
2.434e+04 on 2 and 331 DF,

0.9932
p-value: < 2.2e-16

Pohl et.al’s 0.84 fm radius would predict a slope of - 0.1176

Qefferson Lab



Multivariate Errors

As per the particle data handbook, one should
Parameter 2 be using a co-variance matrix and calculating the
probably content of the hyper-contour of the

fit. Default setting of Minuit of “up”(often call Ax?

A

B .
IS One.
Also note standard Errors often underestimate true
uncertainties. (manual of gnuplot fitting has an
Parameter 1 €Xplicate warning about this)
A Confidence level (probability contents desired inside
Number of hypercontour of x? = x2,, + up)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 2.41 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
The Interpretation of Errors in Minuit (2004 by James) 6 5.35 7.23 10.65 12.59 16.81
o 7 6.35 8.38 12.02 14.07 18.49
seal.cern.ch/documents/minuit/mnerror.pdf N - 34 952 13.36 15.51 920.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71
. If FCN is — log(likelihood) instead of x?, all values of up
In ROOT: SetDefaultErrorDef(X.X) should be divided by 2.
Default is 1 and doesn’t change unless you change it!
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Expected PRad Results (for 0.88 fm radius)

0.95
|

Ge
0.85
|

0.75
|

http://jeffersonlab.githgb.io/model-selection/

I I | [
00 05 10 15

Q? [fm™]
Show is a stepwise regression using

Monte Carlo of the expected PRad
data for a 0.88 fm radius.

This is a range of data very similar to
the HAND et al. 1963 review article.

0

0.010

Residual

0.000

A4
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-0.010
|

05 10 15
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Model Selection

Tools For the selection of a statistical
model £rom experimental data

Model Selection with Stepwise

Reare%ion

While no model selection criteria is perfect, making use of the avaliable statistical tools allows a
researcher to systematically choose a set of predictive variables for a given set of data and critiria. The
selection process can be done by an autmoatic procedure in the form of a sequence of tests such as
F-tests or making use of the Akaike information criterion.

"The most that can be expected from any model is that it can supply a useful approximation to reality:
All models are wrong; some models are useful". -- George Box

Download
B zip Fie

is maintained by JeffersonLab.

Download

targz Fie

This page was generated by GitHub
Pages using the Architect theme by
Jason Long.

.jefferson Lab




Bayesian Priors (The Star Wars Example)

https://www.countbayesie.com/blog/2015/2/18/hans-solo-and-bayesian-priors

« C3PO can calculate the odds of a pilot navigating an asteroid
field (20,000:1)

P(RateOfSuccess|Successes) = Beta(a, 5)

« But Han Solo is one of the best pilots in the galaxy. (i.e. C3P0
ignored a Bayesian Prior)

B eta(aposteriora ﬂposterior) =B eta(alikelihood + Qprior ,Blikelihood + ﬂprior)

« So C3PO actually correctly predicts that average pilots will not
successfully navigate the field while incorrectly predicting Han'’s
chances. (estimated as 75% in the article)

 Ignoring A Bayesian Prior Can Lead To Wrong Conclusions
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Warning: Danger of Confirmation Bias

In psychology and cognitive science, confirmation bias is a
tendency to search for or interpret information in a way that

confirms one's preconceptions, leading to statistical errors.

U.S.SENATE

SEN. JAMES INHOFE C-SPAN2
R-Oklahoma c-span.org
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Believe Your Data !

* Electric and Magnetic Form Factors of the Nucleon
— L.N. Hand, D.G. Miller, Richard Wilson, Rev. Mod. Phys. 35 (1963) 335
— Easy data to play with and see if you can get Hand'’s results.

» Particle Data Handbook — Statistics Section
— http://pdq.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf

» The Interpretation of Errors — Fredrick James
— http://seal.cern.ch/documents/minuit/mnerror.pdf

« Data Analysis Textbooks
— Data Reduction and Error Analysis — Philip Bevington
— Statistical Methods in Experimental Physics — Fredrick James
— Computation Methods for the Physical Science — Simon Sirca
— Probability of Physics — Simon Sirca

« R Programing Language
— https://www.r-project.org/

« Estimation
— Street-Fighting Mathematics (open source) — Sanjoy Mahajan
— Guesstimation — Larry Weinstein
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“Proton Radius Puzzle” in 1975 1?

F. Borkowski, G.G. Simon, V. H. Walther, and R. D. Wendling, Nucl. Phys. B93 (1975) 461.

GE,M(Q?')= I - lé(r%’M)qu + 120(rE,1\4>|q|4 ‘s (6)

For g2 < 0.9 fm—2 the contributions of the higher terms in the expansion (6)
are negligable and the series can be truncated to give G E(qz) = § + Bg2. From fitting
this expression to the form factors of fig. 5, the solid line of fig. 5 has been ob-
tained. The best fit parameters were & = 0.994 + 0.002 and § = —0.118 + 0.004 fm?.
The reduced x? was 0.5. The result of the fit did not depend significantly on the
fitted g2 range. This was checked by fitting additionally the G values of table 2 up
to 1.2 fm~—2. The addition of a q4 term to the fit formula did not improve the fit,
moreoever the error of the additional parameter turned out to be larger than its
value. The best fit value of the parameter 6 is well within the normalization error of
the GE values. The best fit value of the parameter (3 gives a proton r.m.s. radius of
(rE)2 = (.84 £ 0.02 fm. This value is higher than the dipole value of 0.81 fm, but
within the error limits it is compatible with the result (0.81 £ 0.04 fm) of a similar
experiment carried out at Saskatoon [7].

This is the same conclusions one gets with stepwise regression using the new data Mainz though with much smaller uncertainties.
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Particle Data Handbook

By setting “ErrorDef” to 2.71 ROOT would report an m=1 90% coverage probalitiy instead of 68%.

Table 38.2: Values of Ax2 or 2AIn L corresponding to a coverage probability
1 — « in the large data sample limit, for joint estimation of m parameters.

(1—a) (%) m=1 m=2 m=3

68.27 1.00 2.30 3.53

90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

£ 11,6) 99. 663 921 11.34
99.73 9.00 11.83 14.16

o/2 /2

| l l |
-3 -2 -1 0 1 2 3
(x—w)/oc

Figure 38.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by o = 0.1, are as shown.

Confidence interval + alpha =1
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