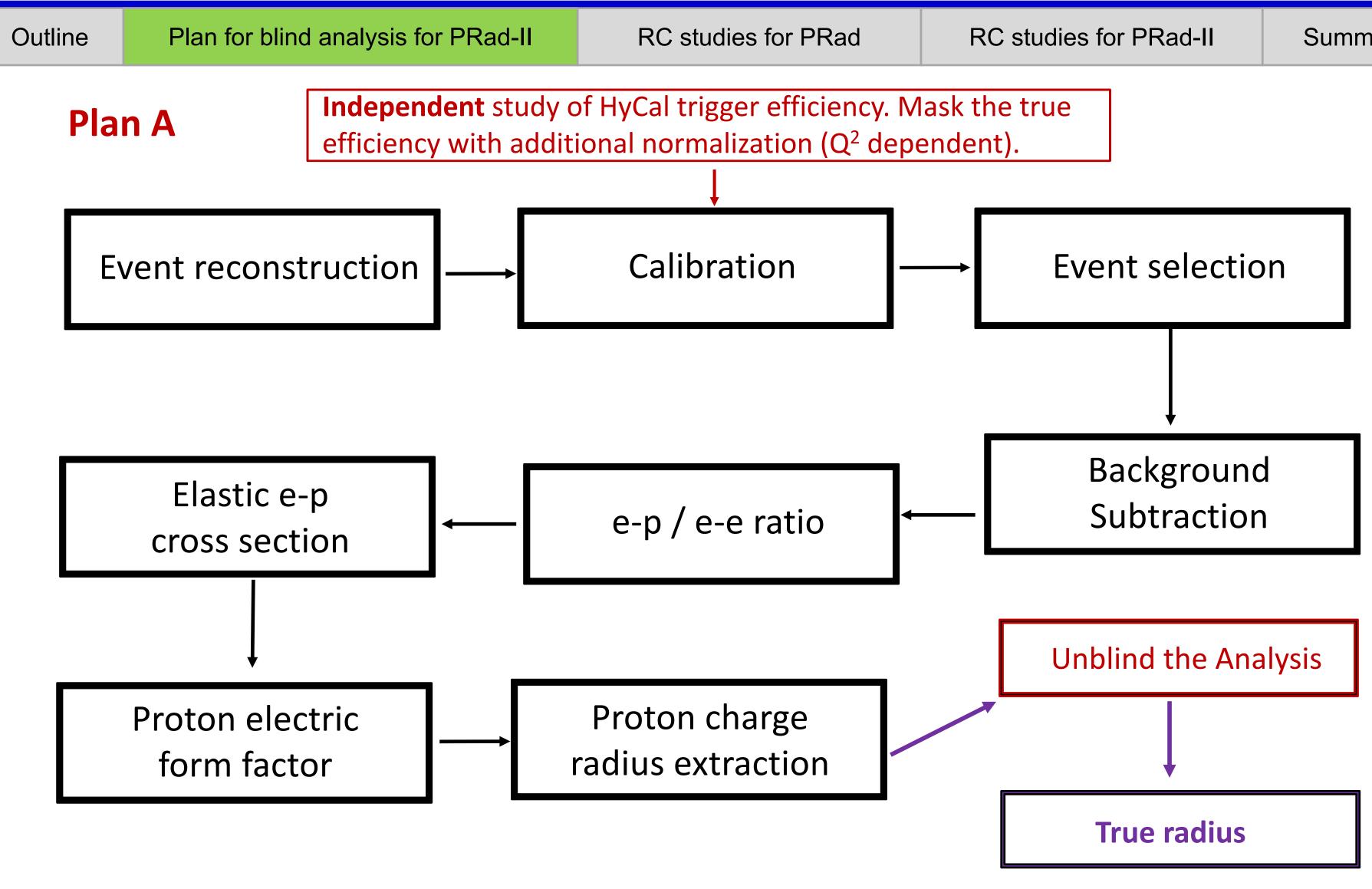

Studies of Radiative Corrections for the PRad-II Experiment

Haiyan Gao Duke University For the PRad Collaboration

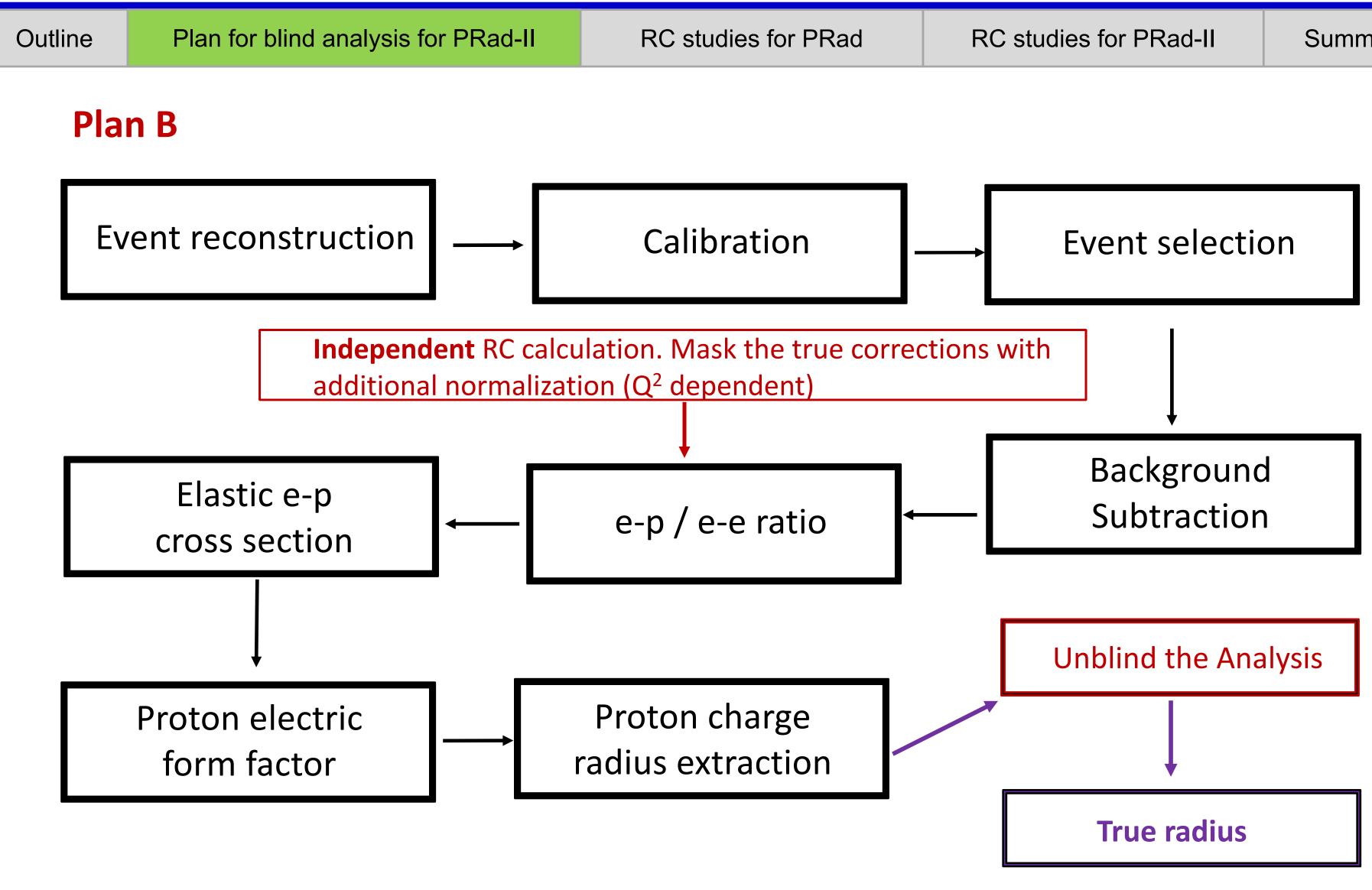
PRad-II C1 review, March 12, 2021

PRad-II C1 Review

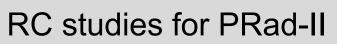
March 12, 2021



- Plan for blind analysis to extract the proton radius (r_p) for PRad-II
- Radiative correction (RC) studies for PRad
 - PRad's estimation of the RC systematic uncertainty of r_{ρ}
 - Independent study of the RC systematic uncertainty of r_{ρ}
- RC studies for PRad-II
 - Integrated Møller method
 - Plans for the next-to-next leading order (NNLO) calculations
 - Improvement from PRad to PRad-II
 - Partial testing of calculations of radiative effects
- Summary



Plan: Blind analysis for extraction of r_p for PRad-II


PRad-II C1 review, March 12, 2021

Plan: Blind analysis for extraction of r_p for PRad-II

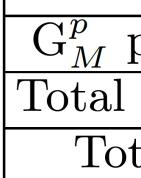
PRad-II C1 review, March 12, 2021

PRad's estimation of the RC syst. uncertainty of r_p

Outline	Plan for blind analysis for PRad-II	RC studies for PRad

- Measured radius: *Nature* 575, 147 (2019)
 - $r_p = (0.831 \pm 0.007_{stat} \pm 0.012_{syst}) \text{ fm}$
- r_p uncertainties for PRad shown in the table
 - Uncertainties estimated using • the rational (1,1) function

X. Yan et al. PRC 98, 025204 (2018)


Using rational (1,1)
$$f(Q^2) = \frac{1 + p_1 Q^2}{1 + p_2 Q^2}$$

Sta
G

Bea	an
-	E

PRad-II C1 review, March 12, 2021

RC studies for PRad-II

Item	PRad δr_p [fm]
Stat. uncertainty	0.0075
GEM efficiency	0.0042
Acceptance	0.0026
eam energy related	0.0022
Event selection	0.0070
HyCal response	0.0029
Beam background	0.0039
adiative correction	0.0069
Inelastic <i>ep</i>	0.0009
M_{M} parameterization	0.0006
al syst. uncertainty	0.0115
Total uncertainty	0.0137

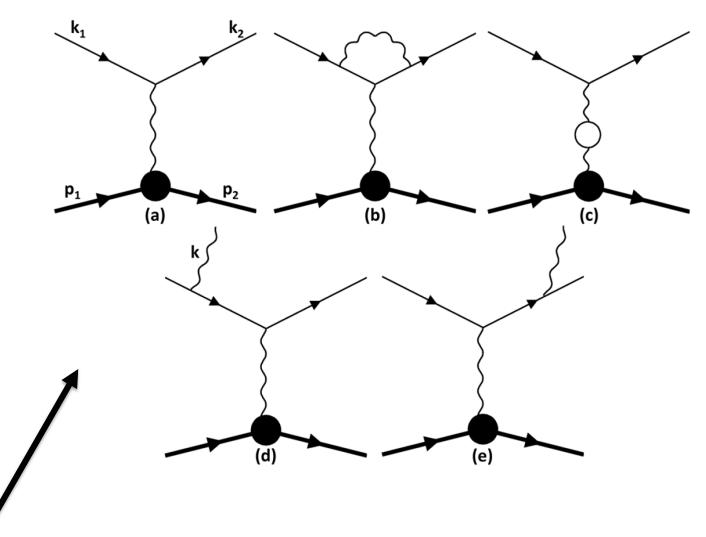
PRad's estimation of the RC syst. uncertainty of r_{p}

Outline

RC studies for PRad

- RCs one of the largest syst. uncertainty sources of r_{p} for PRad
 - RCs studied for both e-p and Møller scatterings
 - Event generator used, made using the results from *I. Akushevich et al, EPJA* 51, 1 (2015)
 - Used analytical calculations for one-loop e-p and Møller RC diagrams Ο
 - Calculated within covariant formalism and beyond ultra-relativistic limit Ο
 - Infrared divergence extracted and cancelled by Bardin-Shumeiko approach Ο (ep cross checked by event generator using A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001; MØller by what's used in the Olympus experiment.)
 - PRad RC syst. uncertainty on r_p estimated
 - using the first-order RC results from EPJA 51, 1 (2015) Ο
 - using a method from A. Arbuzov and T. Kopylova, EPJC 75, 603 (2015) for estimation of the contribution stemming from higher order RCs
 - Estimated syst. uncertainties correlated and Q²-dependent ullet

RC studies for PRad-II

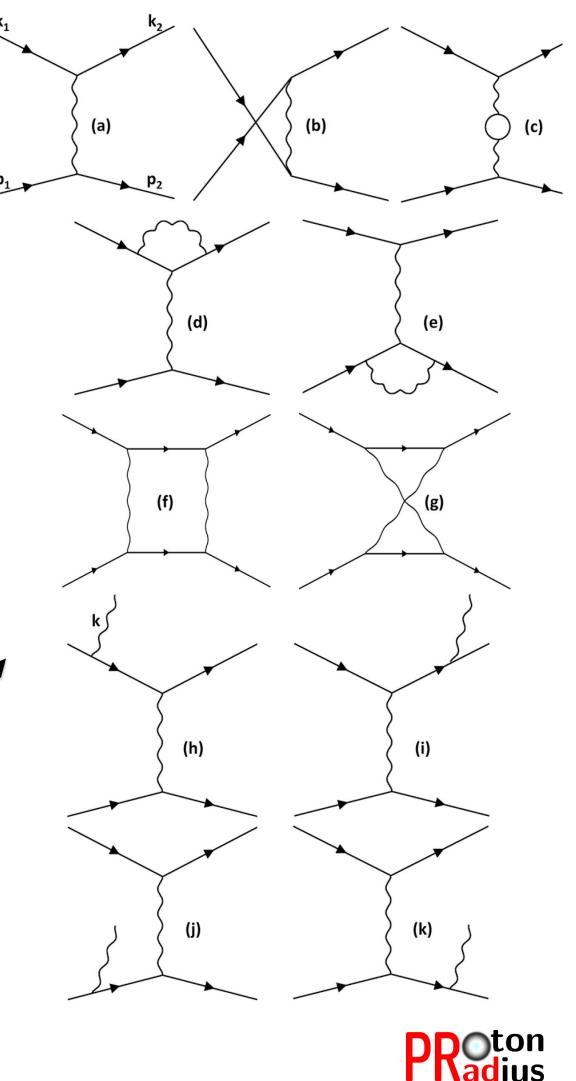


PRad's estimation of the RC syst. uncertainty of r_{p}

Outline Plan for blind analysis for PRad-II

RC studies for PRad

• e-p and Møller NLO diagrams used for cross section calculations in EPJA 51, 1 (2015)


- Feynman diagrams contributing to the Born and RC cross sections in e+p elastic scattering:
 - (a) The Born process; (b) Vertex correction;
 - (c) Vacuum polarization; (d)-(e) Bremsstrahlung.
- Feynman diagrams contributing to the Born (a)-(b) and RC cross sections for Møller scattering:

(c)-(e) Vacuum polarization and vertex correction; (f)-(g) Box contribution; (h)-(k) Bremsstrahlung.

PRad-II C1 review, March 12, 2021

RC studies for PRad-II

PRad's estimation of the RC syst. uncertainty of r_p

Outline	Plan for blind analysis for PRad-II	RC studies for PRad

- Two methods for forming e-p to e-e differential cross section ratio (luminosity) cancellation)
 - Bin-by-bin method
 - Forms the ratio using the e-p and e-e counts from the same angular bin 0
 - Cancels out the energy-independent part of acceptance and GEM efficiency Ο
 - Q²-dependent syst. uncertainties from the e-e process introduced 0
 - Integrated Møller method
 - Uses e-e counts from a selected angular range
 - Gives a common normalization factor for all e-p Q^2 bins; no effect on extracted r_p Ο
 - Not applied to all Q² bins in PRad, since the GEM efficiency not precisely Ο determined in all those bins

Q²-dependence much larger for Møller RC in PRad

- Affects the cross-section results via the use of the bin-by-bin method lacksquare
- For e-p RC $\rightarrow \delta r_p = 0.0020 \text{ fm}$; for Møller RC $\rightarrow \delta r_p = 0.0065 \text{ fm}$ ullet
- For total RC $\rightarrow \delta r_{p} = 0.0069 \ fm$ ullet

PRad-II C1 review, March 12, 2021

RC studies for PRad-II

Outline	Plan for blind analysis for PRad-II	RC studies for PRad
---------	-------------------------------------	---------------------

- Independent study performed for the second-order RC effect on r_p
 - Followed the approach of A. Aleksejevs et al, Physics of Atomic Nuclei, 76, 888 (2013)
 - Paper calculated two-loop radiative effects in the MOLLER experiment 0
 - Based on its mathematical framework and for PRad kinematics
 - Contribution from NNLO diagrams on the Born cross section estimated 0
 - For any reasonable photon energy cut for the PRad experiment Ο
 - Q^2 -dependent syst. uncertainties smaller than that estimated in the first approach Ο
 - The largest RC syst. uncertainty computed: $\delta r_{p} = 0.0047 \text{ fm}$ Ο
 - However, approximated methods and restricted number of diagrams used Improved and exact NNLO calculations are much desired

RC studies for PRad-II

Outline	Plan for blind analysis for PRad-II	RC studies for PRad
---------	-------------------------------------	---------------------

- Limitations of GEM efficiency determination in PRad
 - Contributed indirectly to the total syst. uncertainty
 - Should be improved
- Aiming at a significantly better precision in PRad-II compared with PRad
 - Employ two planes of coordinate tracking detectors
 - Achieve a precise measurement of tracking detector efficiency (~ 0.1% level)
 - Reduce various backgrounds
 - Use the integrated Møller method for all angular bins
 - Suppress the Q²-dependent syst. uncertainties
 - Turn all the Møller syst. uncertainties into cross section normalization uncertainties
 - δr_p from RCs will be reduced from 0.0069 fm to 0.0015 fm

PRad-II C1 review, March 12, 2021

RC studies for PRad-II

Plans for the NNLO calculations

Outline Plan for blind analysis for PRad-II **RC** studies for PRad

- To achieve the PRad-II goal of total syst. uncertainty of 0.0032 fm
 - Very necessary also to perform improved NNLO RC calculations
 - Plans in place by the PRad Collaboration's theory colleagues
 - Leading investigator Dr. Stanislav Srednyak in close collaboration with Drs. Igor Akushevich and Alexander Ilyichev
 - Contacts/potential collaborations with the PSI and Mainz groups on the subject matter established
- Advantages and disadvantages of the original paper EPJA 51, 1 (2015)
 - Advantages
 - Both e-p and e-e treated in the same approach Ο
 - First-order diagrams calculated analytically Ο
 - Dependence on the electron mass kept, accurate in $O(\alpha)$ Ο
 - Disadvantages (indicated by Andrej Arbuzov at First TPC Collaboration Meeting in Mainz)
 - Improper treatment of higher-order effects Ο
 - No two-photon exchange, no hadronic vacuum polarization (PRad simulation) Ο included TPE effect)
 - No radiation off proton and up-down interference, Ο

PRad-II C1 review, March 12, 2021

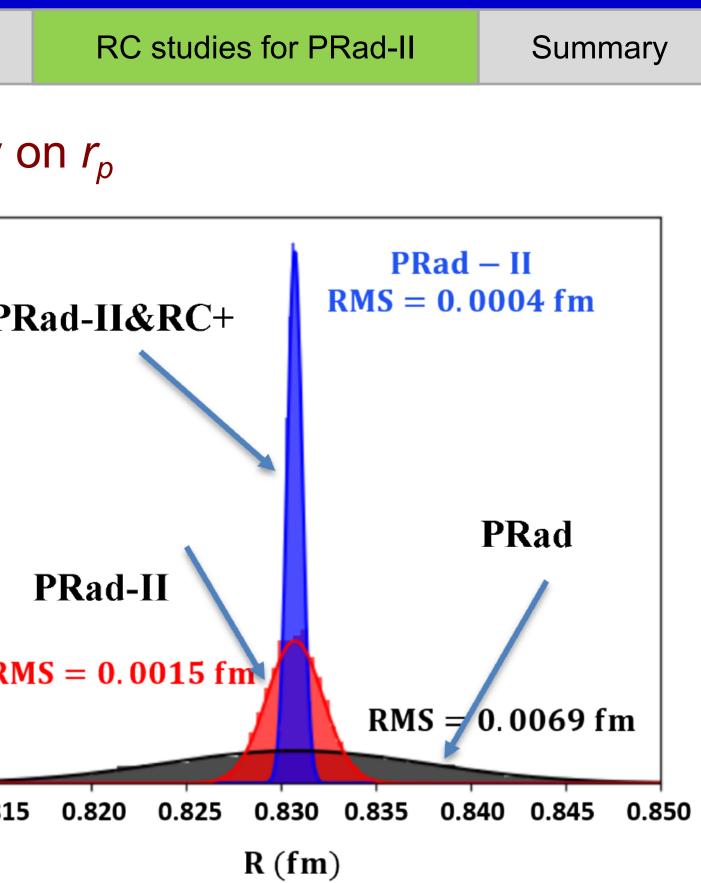
RC studies for PRad-II

Outline	Plan for blind analysis for PRad-II	RC studies for PRad

- Submitted proposal to DOE by Akushevich (PI) and Gao (co-PI) on NNLO RC calculations for PRad-II (under review)
- Need to accomplish the following tasks
 - Calculation of NNLO contributions to e-p and Møller scattering diagrams by the end of 2022 (proposed plan in the DOE proposal)
 - Focus on mathematical approach of Gelfand-Kapranov-Zelevinsky 0
 - Develop the so-called Gamma series method Ο
 - Calculate one- and two-loop integrals with the new method
 - Obtain all necessary results by the end of 2024
 - Evaluate also the two-photon exchange part to hadronic corrections Ο
 - Make a new MC event generator or update the current one (working with PRad) Ο
 - Finalize the project (working with PRad)

PRad-II C1 review, March 12, 2021

RC studies for PRad-II


Improvement from PRad to PRad-II

Outline	Plan for blind analysis for PRad-II	RC studies for	PRad
• Imj	provement of the RC associat	ted syst. unce	ertainty of
	• Black spectrum $\rightarrow \operatorname{RC} \delta r_p$ fo	r PRad	00 -
	• Red spectrum \rightarrow projected f δr_p with two planes of coordin	Ē	, PF
	tracking detectors plus curren RC calculations	nt Octomore Co No Portugalized Co) -
	• Blue spectrum \rightarrow projected δr_{ρ} with two planes of coordin	Z) -
	tracking detectors plus improv RC calculations at NNLO	200	D - RN
			0.810 0.815
	tling of the current project pro	sontad	

- Outline of the current project presented
 - Whitepaper on Radiative Corrections: *arXiv:2012.09970 [nucl-th]* ullet
 - Synergy with ongoing RC-related studies for the JLab SoLID SIDIS and the planned ulletstudies for the proposed DRad experiment

PRad-II C1 review, March 12, 2021

Improvement from PRad to PRad-II

Outline	Plan for blind analysis for PRad-II RO		RC studies for PRad
	14		
	ltem	PRad δr _p [fm]	PRad-ll δr _p [fm]
	Stat. uncertainty	0.0075	0.0017
	GEM efficiency	0.0042	0.0008
	Acceptance	0.0026	0.0002
	Beam energy related	0.0022	0.0002
	Event selection	0.0070	0.0027
	HyCal response	0.0029	Negligible
	Beam background	0.0039	0.0016
	Radiative correction	0.0069	0.0004
	Inelastic ep	0.0009	Negligible
	G^p_M parameterization	0.0006	0.0005
	Total syst. uncertainty	0.0115	0.0032
	Total uncertainty	0.0137	0.0036

PRad-II C1 review, March 12, 2021

A factor of 3.8 improvement !

RC studies for PRad-II

Summary

Result of

More beam time and higher DAQ rate

2nd tracking detector

2nd tracking detector

2nd tracking detector

2nd tracking + HyCal upgrade

HyCal upgrade

Better vacuum 2nd halo blocker vertex res. (2nd tracking)

Improved calc.

Upgraded HyCal

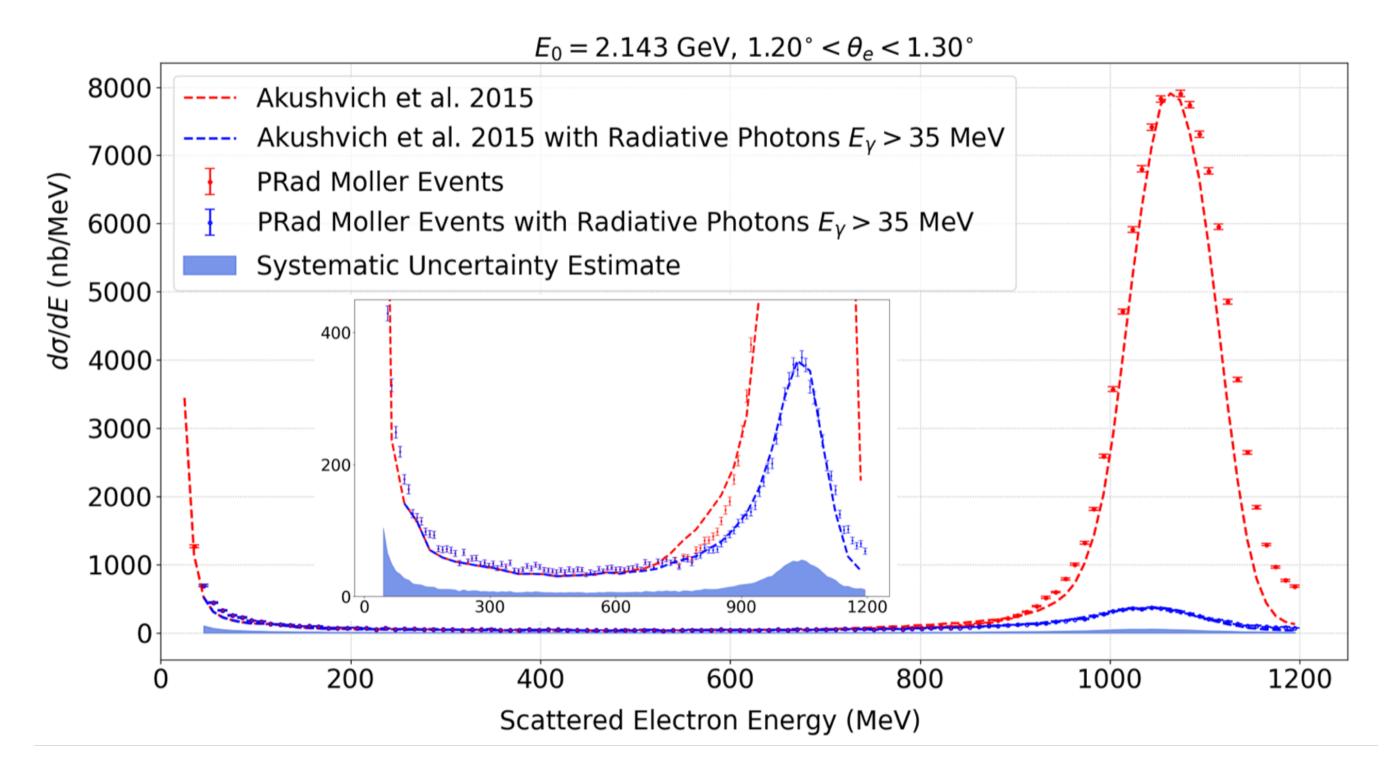
Can we test (partially) calculations of radiative effects?

Outline Plan for blind analysis for PRad-II RC studies for PRad

- Validate (partially) calculations of radiative effects by PRad-II data
- PRad-II will be significantly improved compared with PRad
 - Two planes of tracking detectors and upgraded HyCal detector \bullet
 - Excellent PID between electrons and photons
 - Simultaneously detection of scattered electrons and "hard" radiative photons.
 - Better resolution for low energy photons with all crystal HyCal
 - Higher statistics to check photon distributions vs. their opening angles and energies
- Limitations in PRad
 - GEM efficiency limited knowledge
 - HyCal lead-glass low resolution lacksquare
 - Inability to determine cross sections with "hard" photon emissions with precision due to poor statistics

PRad-II C1 review, March 12, 2021

RC studies for PRad-II


Can we test (partially) calculations of radiative effects?

Outline

Plan for blind analysis for PRad-II

RC studies for PRad

- Study with the PRad Møller data
 - Symmetric single-arm Møller events from the PRad 2.2 GeV data
 - Select "hard" radiative photon with $E_{\nu} > 35$ MeV (limited by HyCal resolution) lacksquare
 - "Hard" radiative process dominating the cross sections at low scattering energy ullet

PRad-II C1 review, March 12, 2021

RC studies for PRad-II

- For PRad-II, we plan for blind analyses to reduce possible bias coming from normalization and Q^2 -dependence of the form factors
- In PRad, the RCs found as the second largest syst. uncertainty source for r_{p}
 - Estimated also by an independent study with another method
- Achieve a substantially better precision in PRad-II compared to PRad
 - Employ two planes of coordinate detectors to improve the detector efficiency
 - Apply the integrated Møller method to all angular bins
 - Suppress the Møller Q²-dependent syst. uncertainties
 - Accomplish improved NNLO calculations for e-p and Møller scatterings
 - Experimental (partial) validation of calculations of radiative effects

