2GeV beam ep event HyCal cluster size (nblocks) distribution

2GeV beam ep yield phi asymmetry vs HyCal cluster size cut

R: (73.5mm - 110.5mm)

GEM dead area not removed Empty run not subtracted

12 2GeV runs

- HyCal cluster size 1 sigma cut: (pwo: 20-26; Ig: 11-19; transition: 16-22)
- HyCal cluster size 2 sigma cut: (pwo: 17-29; Ig: 7-23; transition: 13-25)
- HyCal cluster size 3 sigma cut: (pwo: 14-32; lg: 3-27; transition: 10-28)

2 GeV beam ep yield phi asymmetry vs HyCal cluster size cut

R: distance to beam center

GEM dead area not removed Empty run not subtracted

12 2GeV runs

- HyCal cluster size 1 sigma cut: (pwo: 20-26; Ig: 11-19; transition: 16-22)
- HyCal cluster size 2 sigma cut: (pwo: 17-29; Ig: 7-23; transition: 13-25)
- HyCal cluster size 3 sigma cut: (pwo: 14-32; Ig: 3-27; transition: 10-28)

2 GeV beam ep yield phi asymmetry - background subtraction

- HyCal cluster size 3 sigma cut

Theta: $0.8 \mathrm{deg}-0.9 \mathrm{deg}$ ep events

- Background level is different in different phi region
- Background sources: cosmic, bremstrulung photons (this should be symmetric to phi), etc...
- For GEM efficiency study, need good separation of Bkg and signal

Theta: 0.9deg - 1.0 deg ep events

2 GeV beam ep yield phi asymmetry - background subtraction

- HyCal cluster size 3 sigma cut

Theta: 1.0deg - 1.1 deg ep events

Theta: 1.2deg - 1.3 deg ep events

- Background level is different in different phi region
- Background sources: cosmic, bremstrulung photons (this should be symmetric to phi), etc...
- For GEM efficiency study, need good separation of Bkg and signal

2GeV beam ep yield phi asymmetry - background subtraction Compare between ep and ee2
ep events

